5,107 research outputs found
Current-driven filamentation upstream of magnetized relativistic collisionless shocks
The physics of instabilities in the precursor of relativistic collisionless
shocks is of broad importance in high energy astrophysics, because these
instabilities build up the shock, control the particle acceleration process and
generate the magnetic fields in which the accelerated particles radiate. Two
crucial parameters control the micro-physics of these shocks: the magnetization
of the ambient medium and the Lorentz factor of the shock front; as of today,
much of this parameter space remains to be explored. In the present paper, we
report on a new instability upstream of electron-positron relativistic shocks
and we argue that this instability shapes the micro-physics at moderate
magnetization levels and/or large Lorentz factors. This instability is seeded
by the electric current carried by the accelerated particles in the shock
precursor as they gyrate around the background magnetic field. The compensation
current induced in the background plasma leads to an unstable configuration,
with the appearance of charge neutral filaments carrying a current of the same
polarity, oriented along the perpendicular current. This ``current-driven
filamentation'' instability grows faster than any other instability studied so
far upstream of relativistic shocks, with a growth rate comparable to the
plasma frequency. Furthermore, the compensation of the current is associated
with a slow-down of the ambient plasma as it penetrates the shock precursor (as
viewed in the shock rest frame). This slow-down of the plasma implies that the
``current driven filamentation'' instability can grow for any value of the
shock Lorentz factor, provided the magnetization \sigma <~ 10^{-2}. We argue
that this instability explains the results of recent particle-in-cell
simulations in the mildly magnetized regime.Comment: 14 pages, 8 figures; to appear in MNRA
Inhibition of Tendon Cell Proliferation and Matrix Glycosaminoglycan Synthesis by Non-Steroidal Anti-Inflammatory Drugs in vitro
The purpose of this study was to investigate the effects of some commonly used non-steroidal anti-inflammatory drugs (NSAIDs) on human tendon. Explants of human digital flexor and patella tendons were cultured in medium containing pharmacological concentrations of NSAIDs. Cell proliferation was measured by incorporation of 3H-thymidine and glycosaminoglycan synthesis was measured by incorporation of 35S-Sulphate. Diclofenac and aceclofenac had no significant effect either on tendon cell proliferation or glycosaminoglycan synthesis. Indomethacin and naproxen inhibited cell proliferation in patella tendons and inhibited glycosaminoglycan synthesis in both digital flexor and patella tendons. If applicable to the in vivo situation, these NSAIDs should be used with caution in the treatment of pain after tendon injury and surgery
Fractional Hamiltonian Monodromy from a Gauss-Manin Monodromy
Fractional Hamiltonian Monodromy is a generalization of the notion of
Hamiltonian Monodromy, recently introduced by N. N. Nekhoroshev, D. A.
Sadovskii and B. I. Zhilinskii for energy-momentum maps whose image has a
particular type of non-isolated singularities. In this paper, we analyze the
notion of Fractional Hamiltonian Monodromy in terms of the Gauss-Manin
Monodromy of a Riemann surface constructed from the energy-momentum map and
associated to a loop in complex space which bypasses the line of singularities.
We also prove some propositions on Fractional Hamiltonian Monodromy for 1:-n
and m:-n resonant systems.Comment: 39 pages, 24 figures. submitted to J. Math. Phy
Synthesis of new chiral organosulfur donors with hydrogen bonding functionality and their first charge transfer salts
The syntheses of a range of enantiopure organosulfur donors with hydrogen bonding groups are described including TTF related materials with two, four, six and eight hydroxyl groups and multiple stereogenic centres and a pair of chiral N-substituted BEDT-TTF acetamides. Three charge transfer salts of enantiopure poly-hydroxy-substituted donors are reported, including a 4:1 salt with the meso stereoisomer of the dinuclear [Fe2(oxalate)5 ]4- anion in which both cation and anion have chiral components linked together by hydrogen bonding, and a semiconducting salt with triiodide
Transport of Cosmic Rays in Chaotic Magnetic Fields
The transport of charged particles in disorganised magnetic fields is an
important issue which concerns the propagation of cosmic rays of all energies
in a variety of astrophysical environments, such as the interplanetary,
interstellar and even extra-galactic media, as well as the efficiency of Fermi
acceleration processes. We have performed detailed numerical experiments using
Monte-Carlo simulations of particle propagation in stochastic magnetic fields
in order to measure the parallel and transverse spatial diffusion coefficients
and the pitch angle scattering time as a function of rigidity and strength of
the turbulent magnetic component. We confirm the extrapolation to high
turbulence levels of the scaling predicted by the quasi-linear approximation
for the scattering frequency and parallel diffusion coefficient at low
rigidity. We show that the widely used Bohm diffusion coefficient does not
provide a satisfactory approximation to diffusion even in the extreme case
where the mean field vanishes. We find that diffusion also takes place for
particles with Larmor radii larger than the coherence length of the turbulence.
We argue that transverse diffusion is much more effective than predicted by the
quasi-linear approximation, and appears compatible with chaotic magnetic
diffusion of the field lines. We provide numerical estimates of the Kolmogorov
length and magnetic line diffusion coefficient as a function of the level of
turbulence. Finally we comment on applications of our results to astrophysical
turbulence and the acceleration of high energy cosmic rays in supernovae
remnants, in super-bubbles, and in jets and hot spots of powerful
radio-galaxies.Comment: To be published in Physical Review D, 20 pages 9 figure
Estimating the functional form for the density dependence from life history data
Two contrasting approaches to the analysis of population dynamics are currently popular: demographic approaches where the associations between demographic rates and statistics summarizing the population dynamics are identified; and time series approaches where the associations between population dynamics, population density, and environmental covariates are investigated. In this paper, we develop an approach to combine these methods and apply it to detailed data from Soay sheep (Ovis aries). We examine how density dependence and climate contribute to fluctuations in population size via age- and sex-specific demographic rates, and how fluctuations in demographic structure influence population dynamics. Density dependence contributes most, followed by climatic variation, age structure fluctuations and interactions between density and climate. We then simplify the density-dependent, stochastic, age-structured demographic model and derive a new phenomenological time series which captures the dynamics better than previously selected functions. The simple method we develop has potential to provide substantial insight into the relative contributions of population and individual-level processes to the dynamics of populations in stochastic environments
Pair Plasma Dominance in the Parsec-Scale Relativistic Jet of 3C345
We investigate whether a pc-scale jet of 3C345 is dominated by a normal
plasma or an electron-positron plasma. We present a general condition that a
jet component becomes optically thick for synchrotron self-absorption, by
extending the method originally developed by Reynolds et al. The general
condition gives a lower limit of the electron number density, with the aid of
the surface brightness condition, which enables us to compute the magnetic
field density. Comparing the lower limit with another independent constraint
for the electron density that is deduced from the kinetic luminosity, we can
distinguish the matter content. We apply the procedure to the five components
of 3C345 (C2, C3, C4, C5, and C7) of which angular diameters and radio fluxes
at the peak frequencies were obtainable from literature. Evaluating the
representative values of Doppler beaming factors by their equipartition values,
we find that all the five components are likely dominated by an
electron-positron plasma. The conclusion does not depend on the lower cutoff
energy of the power-law distribution of radiating particles.Comment: 17 page
On the Concept of a Notational Variant
In the study of modal and nonclassical logics, translations have frequently been employed as a way of measuring the inferential capabilities of a logic. It is sometimes claimed that two logics are “notational variants” if they are translationally equivalent. However, we will show that this cannot be quite right, since first-order logic and propositional logic are translationally equivalent. Others have claimed that for two logics to be notational variants, they must at least be compositionally intertranslatable. The definition of compositionality these accounts use, however, is too strong, as the standard translation from modal logic to first-order logic is not compositional in this sense. In light of this, we will explore a weaker version of this notion that we will call schematicity and show that there is no schematic translation either from first-order logic to propositional logic or from intuitionistic logic to classical logic
- …