127 research outputs found

    A surveillance system to monitor excess mortality of people with mental illness in Canada

    Get PDF
    Objective: Outcome measures are rarely available for surveillance and system performance monitoring for mental disorders and addictions. Our study aims to demonstrate the feasibility and face validity of routinely measuring the mortality gap in the Canadian context at the provincial and regional levels using the methods and data available to the Canadian Chronic Disease Surveillance System (CCDSS) of the Public Health Agency of Canada. Methods: We used longitudinal data from the Quebec Integrated Chronic Disease Surveillance System, which also provides aggregated data to the CCDSS. This includes data from the health insurance registry physician claims and the hospital discharge abstract for all mental disorder diagnoses (International Classification of Diseases [ICD]-9 290-319 or ICD-10 F00-F99). Patients were defined as having had received a mental disorder diagnosis at least once during the year. Life expectancy was measured using Chiang's method for abridged life tables, complemented by the Hsieh method for adjustment of the last age interval. Results: We found a lower life expectancy among psychiatric patients of 8 years for men and 5 years for women. For patients with schizophrenia, life expectancy was lowered by 12 years for men and 8 years for women. Cardiovascular disease and cancer were the most common causes of premature death. Findings were consistent across time and regions of the province. Lower estimates of the mortality gap, compared with literature, could be explained by the inclusion of primary care patients and methods. Conclusions: Our study demonstrates the feasibility of using administrative data to measure the impact of current and future mental health plans in Canada provided the techniques can be replicated in other Canadian provinces

    Atypical Retinal Phenotype in a Patient With Alström Syndrome and Biallelic Novel Pathogenic Variants in ALMS1, Including a de novo Variation

    Get PDF
    Alström syndrome (ALMS) is a rare autosomal recessive multi-organ syndrome considered to date as a ciliopathy and caused by variations in ALMS1. Phenotypic variability is well-documented, particularly for the systemic disease manifestations; however, early-onset progressive retinal degeneration affecting both cones and rods (cone-rod type) is universal, leading to blindness by the teenage years. Other features include cardiomyopathy, kidney dysfunction, sensorineural deafness, and childhood obesity associated with hyperinsulinemia and type 2 diabetes mellitus. Here, we present an unusual and delayed retinal dystrophy phenotype associated with ALMS in a 14-year-old female, with affected cone function and surprising complete preservation of rod function on serial electroretinograms (ERGs). High-throughput sequencing of the affected proband revealed compound heterozygosity with two novel nonsense variations in the ALMS1 gene, including one variant of de novo inheritance, an unusual finding in autosomal recessive diseases. To confirm the diagnosis in the context of an unusually mild phenotype and identification of novel variations, we demonstrated the biallelic status of the compound heterozygous variations (c.[286C > T];[1211C > G], p.[(Gln96*)];[(Ser404*)]). This unique case extends our knowledge of the phenotypic variability and the pathogenic variation spectrum in ALMS patients

    Targeting Human Central Nervous System Protein Kinases: An Isoform Selective p38αMAPK Inhibitor that Attenuates Disease Progression in Alzheimer\u27s Disease Mouse Models

    Get PDF
    The first kinase inhibitor drug approval in 2001 initiated a remarkable decade of tyrosine kinase inhibitor drugs for oncology indications, but a void exists for serine/threonine protein kinase inhibitor drugs and central nervous system indications. Stress kinases are of special interest in neurological and neuropsychiatric disorders due to their involvement in synaptic dysfunction and complex disease susceptibility. Clinical and preclinical evidence implicates the stress related kinase p38αMAPK as a potential neurotherapeutic target, but isoform selective p38αMAPK inhibitor candidates are lacking and the mixed kinase inhibitor drugs that are promising in peripheral tissue disease indications have limitations for neurologic indications. Therefore, pursuit of the neurotherapeutic hypothesis requires kinase isoform selective inhibitors with appropriate neuropharmacology features. Synaptic dysfunction disorders offer a potential for enhanced pharmacological efficacy due to stress-induced activation of p38αMAPK in both neurons and glia, the interacting cellular components of the synaptic pathophysiological axis, to be modulated. We report a novel isoform selective p38αMAPK inhibitor, MW01-18-150SRM (=MW150), that is efficacious in suppression of hippocampal-dependent associative and spatial memory deficits in two distinct synaptic dysfunction mouse models. A synthetic scheme for biocompatible product and positive outcomes from pharmacological screens are presented. The high-resolution crystallographic structure of the p38αMAPK/MW150 complex documents active site binding, reveals a potential low energy conformation of the bound inhibitor, and suggests a structural explanation for MW150\u27s exquisite target selectivity. As far as we are aware, MW150 is without precedent as an isoform selective p38MAPK inhibitor or as a kinase inhibitor capable of modulating in vivo stress related behavior

    Development of Novel In Vivo Chemical Probes to Address CNS Protein Kinase Involvement in Synaptic Dysfunction

    Get PDF
    Serine-threonine protein kinases are critical to CNS function, yet there is a dearth of highly selective, CNS-active kinase inhibitors for in vivo investigations. Further, prevailing assumptions raise concerns about whether single kinase inhibitors can show in vivo efficacy for CNS pathologies, and debates over viable approaches to the development of safe and efficacious kinase inhibitors are unsettled. It is critical, therefore, that these scientific challenges be addressed in order to test hypotheses about protein kinases in neuropathology progression and the potential for in vivo modulation of their catalytic activity. Identification of molecular targets whose in vivo modulation can attenuate synaptic dysfunction would provide a foundation for future disease-modifying therapeutic development as well as insight into cellular mechanisms. Clinical and preclinical studies suggest a critical link between synaptic dysfunction in neurodegenerative disorders and the activation of p38αMAPK mediated signaling cascades. Activation in both neurons and glia also offers the unusual potential to generate enhanced responses through targeting a single kinase in two distinct cell types involved in pathology progression. However, target validation has been limited by lack of highly selective inhibitors amenable to in vivo use in the CNS. Therefore, we employed high-resolution co-crystallography and pharmacoinformatics to design and develop a novel synthetic, active site targeted, CNS-active, p38αMAPK inhibitor (MW108). Selectivity was demonstrated by large-scale kinome screens, functional GPCR agonist and antagonist analyses of off-target potential, and evaluation of cellular target engagement. In vitro and in vivo assays demonstrated that MW108 ameliorates beta-amyloid induced synaptic and cognitive dysfunction. A serendipitous discovery during co-crystallographic analyses revised prevailing models about active site targeting of inhibitors, providing insights that will facilitate future kinase inhibitor design. Overall, our studies deliver highly selective in vivo probes appropriate for CNS investigations and demonstrate that modulation of p38αMAPK activity can attenuate synaptic dysfunction

    Maternal Literacy, Facility Birth, and Education Are Positively Associated with Better Infant and Young Child Feeding Practices and Nutritional Status among Ugandan Children

    Get PDF
    Background: Understanding maternal factors that influence child feeding is necessary to inform intervention planning in settings in which mothers experience substantial social vulnerabilities. Objective: The purpose of this study was to assess maternal sociodemographic factors that may constrain women\u27s caring capabilities and subsequent child nutrition in Uganda. Methods: We analyzed data from the 2006 and 2011 Uganda Demographic and Health Surveys to model the associations between maternal sociodemographic factors, child feeding practices, and anthropometry with multivariate logistic regression models. Results: The proportion of children fed according to recommended guidelines declined in Uganda from 2006 to 2011. Mothers who lacked literacy skills were less likely to achieve recommended complementary feeding indicators; however, literacy was not associated with breastfeeding practices. Mothers in the upper 60% wealth percentile were more likely to meet minimum meal frequency, diversity, and adequacy indicators. Mothers who gave birth at health facilities (2006 OR: 0.49; 95% CI: 0.26, 0.91; P \u3c 0.05) and who were in the upper 60% wealth percentile (2011 OR: 0.43; 95% CI: 0.21, 0.69) were less likely to exCIusively breastfeed until 6 mo. There were no significant associations between age at first pregnancy, maternal education, and infant and young child feeding practices. Women with a formal education had children with lower stunting and underweight probabilities in both time periods (OR range: 0.43-0.74). Women who delivered in childbirth facilities were less likely to have a child with low weight-for-age, length-for-age, or weight-for-length z scores (OR range: 0.59-0.82). Marital status, the age at first child birth, not accepting domestic violence, freedom to travel away from home, and involvement in household and reproductive decisions were not associated with child anthropometry in either time period. Conclusions: Mothers with low literacy skills, who deliver their children at home, and who lack formal education are particularly at risk of poor child feeding and represent a group that may benefit from enhanced interventions that address their particular vulnerabilities. Factors that contribute to improved maternal feeding capabilities but may impair breastfeeding practices need to be better understood

    Global Soil Biodiversity Atlas

    Get PDF
    Soils provide numerous ecosystem services. Most people do not know that the key drivers of soil ecosystems are the living organisms within the soil. Soils may be home to over one fourth of all living species on Earth, with a significant part not yet characterized. The first Global Soil Biodiversity Atlas is a product of the Global Soil Biodiversity Initiative. It aims at raising awareness of the importance and beauty of soil biodiversity among the general public and policy makers. Furthermore, it highlights the need to increase efforts to develop a global assessment of soil biodiversity. Data on distribution of soil-dwelling organisms are often difficult to combine. The atlas represents an attempt to create a unique network among soil biodiversity scientists. Such an effort may help in reaching the level of attention that research on soil biodiversity deserves. With contributions from over 80 experts in soil biodiversity from all over the world, and over 170 pages, the atlas will also display distribution maps of the main soil organisms. Furthermore, an exceptionally high number of images will allow non-specialists to get in touch with this fascinating and mysterious world.JRC.D.6-Knowledge for Sustainable Development and Food Securit

    The Canadian Chronic Disease Surveillance System: A model for collaborative surveillance

    Get PDF
    Chronic diseases have a major impact on populations and healthcare systems worldwide. Administrative health data are an ideal resource for chronic disease surveillance because they are population-based and routinely collected. For multi-jurisdictional surveillance, a distributed model is advantageous because it does not require individual-level data to be shared across jurisdictional boundaries. Our objective is to describe the process, structure, benefits, and challenges of a distributed model for chronic disease surveillance across all Canadian provinces and territories (P/Ts) using linked administrative data. The Public Health Agency of Canada (PHAC) established the Canadian Chronic Disease Surveillance System (CCDSS) in 2009 to facilitate standardized, national estimates of chronic disease prevalence, incidence, and outcomes. The CCDSS primarily relies on linked health insurance registration files, physician billing claims, and hospital discharge abstracts. Standardized case definitions and common analytic protocols are applied to the data for each P/T; aggregate data are shared with PHAC and summarized for reports and open access data initiatives. Advantages of this distributed model include: it uses the rich data resources available in all P/Ts; it supports chronic disease surveillance capacity building in all P/Ts; and changes in surveillance methodology can be easily developed by PHAC and implemented by the P/Ts. However, there are challenges: heterogeneity in administrative databases across jurisdictions and changes in data quality over time threaten the production of standardized disease estimates; a limited set of databases are common to all P/Ts, which hinders potential CCDSS expansion; and there is a need to balance comprehensive reporting with P/T disclosure requirements to protect privacy. The CCDSS distributed model for chronic disease surveillance has been successfully implemented and sustained by PHAC and its P/T partners. Many lessons have been learned about national surveillance involving jurisdictions that are heterogeneous with respect to healthcare databases, expertise and analytical capacity, population characteristics, and priorities

    Proteasome subunit variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress

    Get PDF
    The ubiquitin–proteasome system degrades ubiquitin‐modified proteins to maintain protein homeostasis and to control signalling. Whole‐genome sequencing of patients with severe deafness and early‐onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient\u27s fibroblasts was however unaffected. Nevertheless, patient\u27s cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient\u27s fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient\u27s cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development

    Acari of Canada

    Get PDF
    Summaries of taxonomic knowledge are provided for all acarine groups in Canada, accompanied by references to relevant publications, changes in classification at the family level since 1979, and notes on biology relevant to estimating their diversity. Nearly 3000 described species from 269 families are recorded in the country, representing a 56% increase from the 1917 species reported by Lindquist et al. (1979). An additional 42 families are known from Canada only from material identified to family- or genus-level. Of the total 311 families known in Canada, 69 are newly recorded since 1979, excluding apparent new records due solely to classification changes. This substantial progress is most evident in Oribatida and Hydrachnidia, for which many regional checklists and family-level revisions have been published. Except for recent taxonomic leaps in a few other groups, particularly of symbiotic mites (Astigmata: feather mites; Mesostigmata: Rhinonyssidae), knowledge remains limited for most other taxa, for which most species records are unpublished and may require verification. Taxonomic revisions are greatly needed for a large majority of families in Canada. Based in part on species recorded in adjacent areas of the USA and on hosts known to be present here, we conservatively estimate that nearly 10,000 species of mites occur in Canada, but the actual number could be 15,000 or more. This means that at least 70% of Canada’s mite fauna is yet unrecorded. Much work also remains to match existing molecular data with species names, as less than 10% of the ~7500 Barcode Index Numbers for Canadian mites in the Barcode of Life Database are associated with named species. Understudied hosts and terrestrial and aquatic habitats require investigation across Canada to uncover new species and to clarify geographic and ecological distributions of known species

    A Survey of New Temperature-Sensitive, Embryonic-Lethal Mutations in C. elegans: 24 Alleles of Thirteen Genes

    Get PDF
    To study essential maternal gene requirements in the early C. elegans embryo, we have screened for temperature-sensitive, embryonic lethal mutations in an effort to bypass essential zygotic requirements for such genes during larval and adult germline development. With conditional alleles, multiple essential requirements can be examined by shifting at different times from the permissive temperature of 15°C to the restrictive temperature of 26°C. Here we describe 24 conditional mutations that affect 13 different loci and report the identity of the gene mutations responsible for the conditional lethality in 22 of the mutants. All but four are mis-sense mutations, with two mutations affecting splice sites, another creating an in-frame deletion, and one creating a premature stop codon. Almost all of the mis-sense mutations affect residues conserved in orthologs, and thus may be useful for engineering conditional mutations in other organisms. We find that 62% of the mutants display additional phenotypes when shifted to the restrictive temperature as L1 larvae, in addition to causing embryonic lethality after L4 upshifts. Remarkably, we also found that 13 out of the 24 mutations appear to be fast-acting, making them particularly useful for careful dissection of multiple essential requirements. Our findings highlight the value of C. elegans for identifying useful temperature-sensitive mutations in essential genes, and provide new insights into the requirements for some of the affected loci
    corecore