344 research outputs found

    Video Test to Evaluate Detection Performance of Drivers with Hemianopia: Preliminary Results

    Get PDF
    The ability of individuals with hemianopia to compensate for their vision impairment by eye/head scanning to detect hazards in their non-seeing (blind) hemifield varies widely in both simulator and on-road tests. Conventional visual fields tests do not reflect this variability, while simulator and on-road tests are time-consuming and expensive. We therefore developed a simple, 15-minute video-based pedestrian detection test suitable for implementation on a desktop computer and monitor. The test was found to be sensitive to detection deficits in both hemianopia and quadranopia, and predictive of detection performance in a driving simulator. Our preliminary findings suggest that the test provides a simple method of measuring detection ability relevant to driving which may be useful both as a screening test and as an evaluation tool for rehabilitation devices and training

    Simulator-Based Driving with Hemianopia: Detection Performance and Compensatory Behaviors on Approach to Intersections

    Get PDF
    OBJECTIVES In 22 states people with homonymous hemianopia (complete loss of the visual field on the sameside in both eyes) are explicitly prohibited from driving, as they do not meet the minimum visualfield requirements for driver licensing. However, there is little scientific evidence derived eitherfrom on-road or driving simulator studies about the safety of driving with hemianopia. If the eyeand head were kept stationary, people with hemianopia would not detect anything on the side ofthe field loss. In the real world, however, they may be able to compensate for the loss byexploring the affected (blind) side using head- and eye-scanning. It has been reported that inHolland (where driving with hemianopia is permitted), driving examiners consider increasedhead-scanning (especially on approach to intersections) to be an effective compensation forperipheral visual field defects (Coeckelbergh et al., 2002). Whether increased head-scanningwhile driving results in better detection performance has never been quantitatively investigated.We conducted a simulator-based evaluation of driving with hemianopia to investigate detectionperformance and head movement behaviors on approach to intersections.METHODSTo date, eight people with complete homonymous hemianopia (5 left and 3 right), and withoutvisual neglect or significant cognitive decline have completed the study. All had current or recentdriving experience (within the last 6 years). They completed two simulator sessions, one weekapart, driving in a high-fidelity simulator. Each session consisted of a familiarization period of30-60 minutes followed by 6 test drives (each about 12 minutes in duration). The primarysimulator task was to detect and respond (by a horn press) to the appearance of pedestrian targetsin a variety of traffic situations while driving according to the normal rules of the road. Targetsappeared randomly in locations relevant to real-world driving. There were two types of targets:“roadway” targets, which appeared either on the left or right of the road at small (~ 4°) or large(~14°) eccentricities from the presumed line of sight, and “intersection” targets, which wereplaced near or at intersections to test whether drivers were scanning effectively whenapproaching an intersection. Primary outcome measures were the percentage of targets detectedand reaction times when detected. Head movements were recorded with an inexpensive, lightweight,head-mounted optical head tracking system. Preliminary analyses of head movementbehaviors were conducted for intersections with stop or yield signs. Based on visual inspectionof the head movement plots, the number and direction of head movements were recorded and head movement scanning was graded on a 4-point scale (from 1 inadequate to 4 excellent). Inaddition, we are developing methods to automatically quantify driving skills (e.g., steering, laneposition) from the simulator data output.RESULTSDetection rates for roadway pedestrian targets were lower and reaction times longer on the blindside than the seeing side (p ≀ 0.05). Blind side: median detection rate 47% (IQR 22 to 63%),median reaction time 1.65s (IQR 1.05 to 1.84s); seeing side: median detection rate 93% (IQR89% to 99%), median reaction time 0.93s, (IQR 0.88 to 1.25s). Detection rates on the blind sidewere lower at the larger eccentricity (median 23%) than the smaller eccentricity (median 66%; p= 0.01). Drivers with right hemianopia (RH) detected 83% of intersection pedestrian targets onthe extreme left of an intersection but none on the extreme right, whereas drivers with lefthemianopia (LH) detected 33% on the extreme left and 80% on the extreme right. Better headscanningscores were associated with better detection rates for intersection targets at extremepositions on the blind side (Spearman r = 0.79, p = 0.02). Two of the drivers with LH showedinadequate scanning (grade 1), failing to scan to the left at more than 60% of intersections. Therest of the drivers with LH and all three with RH demonstrated better head-scanning (grades 2-4)with some compensatory head movement behaviors. At T-intersections with no incoming roadon one side, they scanned more frequently in the direction of the “absent” road when it was onthe blind side (RH 40% and LH 80%) than when it was on the seeing side (RH and LH \u3c10%).When there were incoming roads on both sides, the first head scan was normally to the left forLH, but it was to the right about 30% of the time for drivers with RH.CONCLUSIONSThese results provide evidence of widely varying levels of compensation and detection abilitiesamongst drivers with hemianopia, suggesting that fitness to drive should be evaluated on anindividual basis. The preliminary finding of a relationship between head-scanning score andintersection detection performance will be further evaluated using automated methods toquantify head movement behaviors and a larger sample of drivers with hemianopia. Furthermore,we will compare head movement behaviors of drivers with hemianopia to matched controldrivers without visual field loss.REFERENCESCoeckelbergh, T.R., Brouwer, W.H., Cornelissen, F.W., van Wolffelaar, P., Kooijman, A.C.(2002). The effect of visual field defects on driving performance: a driving simulator study. ArchOphthalmol, 120, 1509-1516

    The Impact of Macular Disease on Pedestrian Detection: A Driving Simulator Evaluation

    Get PDF
    We describe the design of a driving simulator study to determine the effect of central visual field loss (due to macular disease) on pedestrian detection when driving. Pilot data suggest that a scotoma (blind area) in the central visual field can impair driving by increasing response time to hazardous circumstances

    Pilot Study of Gaze Scanning and Intersection Detection Failures by Drivers with Hemianopia

    Get PDF
    In a prior study, intersection detection failures of individuals with hemianopia were strongly associated with inadequate head scanning; however, eye position was not tracked. In this pilot study, we tracked eye and head movements, and examined the relationship between gaze scanning and detection of pedestrians at intersections in a driving simulator. Gaze scan deficits, in particular not scanning sufficiently far into the blind hemifield, were the main reason for detection failures at the extreme edge of the clear-sight triangle in the blind hemifield. In addition, the gaze data revealed detection failures due to looked-but-failed-to-see events. The results suggest that HH drivers may be at increased risk for collisions at intersections

    Retinal nerve fiber layer abnormalities in Alzheimer's disease

    Full text link
    Retinal nerve fiber layer (RNFL) photographs from 26 patients with Alzheimer's disease and 23 normal, age-matched, control subjects were reviewed for quality and abnormalities by two observers. A higher proportion of Alzheimer's patients showed RNFL abnormalities when compared to control subjects. There was some disagreement between the two observers regarding quality and frequency of abnormalities, reflecting suboptimal quality of the photographs obtained in patients with advanced Alzheimer's disease. Although these findings add to the clinical and histopathological evidence that ganglion cell degeneration occurs in Alzheimer's disease, the difficulty in obtaining and evaluating retinal nerve fiber layer photographs, especially in advanced cases, may limit the clinical usefulness of retinal nerve fiber layer analysis in such patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73257/1/j.1600-0420.1996.tb00090.x.pd

    Salinity dynamics under different water management plans coupled with sea level rise scenarios in the Red River Delta, Vietnam

    Get PDF
    In recent years, saltwater intrusion in river estuaries has become more severe and frequent worldwide. The common reasons lie in increasing freshwater withdrawal, river flow regulation and sea level rise due to global warming. In particular, the Red River Delta in northern Vietnam is facing a strong population growth worsening the pressure on freshwater resources for drinking water and irrigation needs. During the dry season, increasing conflicts and constraints in freshwater availability have already been experienced. Adverse combinations of river flow regulations and high sea levels lead to severe upstream propagations of salinity. This study takes advantage of a statistical characterization of discharges released from Hoa Binh reservoir and observed at Son Tay station, the main river flow control upstream of the river delta, along with downscaled and updated sea level rise sce- narios to estimate the future extents of saltwater intrusion under different options of water release from reser- voirs in the dry season. To do so, a 1D hydraulic model of the river delta network was implemented using MIKE11 software. The hydraulic and the quality modules were calibrated and validated with respect to the present scenario by using water stages and salinity concentrations observed in estuary branches. Sea level rise projections for 2050 and 2100 referred to RCP4.5 and RCP8.5 AR5 emission scenarios were then considered. Results show that river flow regulation can provide an effective mitigation measure. A 20–30% increase in the discharge released from the Son Tay station would be beneficial to push downstream the saltwater intrusion in the main Red River branch during the dry season. For instance, in 2050 the 1‰ salt concentration front is ex- pected to be pushed back at least 6 km when the exceeding probability of the discharge released by Son Tay station decreases from 95% to 25%

    Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    Get PDF
    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2_2Sr2_2CaCu2_2O8+ÎŽ_{8+\delta} cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.Comment: 24 pages, 9 figures, Main Text and Supplementary Informatio

    Inflammatory role of extracellular sphingolipids in Cystic Fibrosis

    Get PDF
    Ceramide is emerging as one of the players of inflammation in lung diseases. However, data on its inflammatory role in Cystic Fibrosis (CF) as part of the extracellular machinery driven by lung mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) are missing. We obtained an in vitro model of CF-MSC by treating control human lung MSCs with a specific CFTR inhibitor. We characterized EVs populations derived from MSCs (ctr EVs) and CF-MSCs (CF-EVs) and analyzed their sphingolipid profile by LC-MS/MS. To evaluate their immunomodulatory function, we treated an in vitro human model of CF, with both EVs populations. Our data show that the two EVs populations differ for the average size, amount, and rate of uptake. CF-EVs display higher ceramide and dihydroceramide accumulation as compared to control EVs, suggesting the involvement of the de novo biosynthesis pathway in the parental CF-MSCs. Higher sphingomyelinase activity in CF-MSCs, driven by inflammation-induced ceramide accumulation, sustains the exocytosis of vesicles that export new formed pro-inflammatory ceramide. Our results suggest that CFTR dysfunction associates with an enhanced sphingolipid metabolism leading to the release of EVs that export the excess of pro-inflammatory Cer to the recipient cells, thus contributing to maintain the unresolved inflammatory status of CF
    • 

    corecore