459 research outputs found
An all-sky search algorithm for continuous gravitational waves from spinning neutron stars in binary systems
Rapidly spinning neutron stars with non-axisymmetric mass distributions are
expected to generate quasi-monochromatic continuous gravitational waves. While
many searches for unknown, isolated spinning neutron stars have been carried
out, there have been no previous searches for unknown sources in binary
systems. Since current search methods for unknown, isolated neutron stars are
already computationally limited, expanding the parameter space searched to
include binary systems is a formidable challenge. We present a new hierarchical
binary search method called TwoSpect, which exploits the periodic orbital
modulations of the continuous waves by searching for patterns in doubly
Fourier-transformed data. We will describe the TwoSpect search pipeline,
including its mitigation of detector noise variations and corrections for
Doppler frequency modulation caused by changing detector velocity. Tests on
Gaussian noise and on a set of simulated signals will be presented.Comment: 22 pages, 10 figures, 1 table, Submitted to Classical and Quantum
Gravit
The K^*_0(800) scalar resonance from Roy-Steiner representations of pi K scattering
We discuss the existence of the light scalar meson K^*_0(800) (also called
kappa) in a rigorous way, by showing the presence of a pole in the pi K --> pi
K amplitude on the second Riemann sheet. For this purpose, we study the domain
of validity of two classes of Roy-Steiner representations in the complex energy
plane. We prove that one of them is valid in a region sufficiently broad in the
imaginary direction. From this representation, we compute the l=0 partial wave
in the complex plane with neither additional approximation nor model
dependence, relying only on experimental data. A scalar resonance with
strangeness S=1 is found with the following mass and width: E_kappa = 658 \pm
13 MeV and Gamma_kappa = 557 \pm 24 MeV.Comment: 16 pages, 8 figures. Domain of validity of a Roy-Steiner
representation corrected and enlarged, and features of the K^*_0(800) pole
discussed in more details. Conclusions unchange
Energy Analysis of Bare Electrodynamic Tethers
The design of an electrodynamic tether is a complex task that involves the control of dynamic instabilities, optimization of the generated power (or the descent time in deorbiting missions), and minimization of the tether mass. The electrodynamic forces on an electrodynamic tether are responsible for variations in the mechanical energy of the tethered system and can also drive the system to dynamic instability. Energy sources and sinks in this system include the following: 1) ionospheric impedance, 2) the potential drop at the cathodic contactor, 3) ohmic losses in the tether, 4) the corotational plasma electric field, and 5) generated power and/or 6) input power. The analysis of each of these energy components, or bricks, establishes parameters that are useful tools for tether design. In this study, the nondimensional parameters that govern the orbital energy variation, dynamic instability, and power generation were characterized, and their mutual interdependence was established. A space-debris mitigation mission was taken as an example of this approach for the assessment of tether performance. Numerical simulations using a dumbbell model for tether dynamics, the International Geomagnetic Reference Field for the geomagnetic field, and the International Reference Ionosphere for the ionosphere were performed to test the analytical approach. The results obtained herein stress the close relationships that exist among the velocity of descent, dynamic stability, and generated power. An optimal tether design requires a detailed tradeoff among these performances in a real-world scenario
Masses of ground and excited-state hadrons
We present the first Dyson-Schwinger equation calculation of the light hadron
spectrum that simultaneously correlates the masses of meson and baryon ground-
and excited-states within a single framework. At the core of our analysis is a
symmetry-preserving treatment of a vector-vector contact interaction. In
comparison with relevant quantities the
root-mean-square-relative-error/degree-of freedom is 13%. Notable amongst our
results is agreement between the computed baryon masses and the bare masses
employed in modern dynamical coupled-channels models of pion-nucleon reactions.
Our analysis provides insight into numerous aspects of baryon structure; e.g.,
relationships between the nucleon and Delta masses and those of the
dressed-quark and diquark correlations they contain.Comment: 25 pages, 7 figures, 4 table
Three methods to detect the predicted DDˉ scalar meson X(3700)
In analogy to the f(0)(500), which appears as a pi pi resonance in chiral unitary theory, and the f(0)(980), which appears as a quasibound K (K) over bar state, the extension of this approach to the charm sector also predicts a quasibound D (D) over bar state with mass around 3720 MeV, named as X(3700), for which some experimental support is seen in the e(+)e(-) -> J/psi D (D) over bar reaction close to the D (D) over bar threshold. In the present work we propose three different experiments to observe it as a clear peak. The first one is the radiative decay of the psi(3770), psi(3770) -> gamma X(3700) -> gamma eta eta'. The second one proposes the analogous reaction psi(4040) -> gamma X(3700) -> gamma eta eta' and the third reaction is the e(+)e(-) -> J/psi X(3700) -> J/psi eta eta'. Neat peaks are predicted for all the reactions and the calculated rates are found within measurable range in present facilities
New Insights into the Mechanism of Visible Light Photocatalysis
ABSTRACT: In recent years, the area of developing visible-lightactive photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron− hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
Dynamical Patterns of Cattle Trade Movements
Despite their importance for the spread of zoonotic diseases, our
understanding of the dynamical aspects characterizing the movements of farmed
animal populations remains limited as these systems are traditionally studied
as static objects and through simplified approximations. By leveraging on the
network science approach, here we are able for the first time to fully analyze
the longitudinal dataset of Italian cattle movements that reports the mobility
of individual animals among farms on a daily basis. The complexity and
inter-relations between topology, function and dynamical nature of the system
are characterized at different spatial and time resolutions, in order to
uncover patterns and vulnerabilities fundamental for the definition of targeted
prevention and control measures for zoonotic diseases. Results show how the
stationarity of statistical distributions coexists with a strong and
non-trivial evolutionary dynamics at the node and link levels, on all
timescales. Traditional static views of the displacement network hide important
patterns of structural changes affecting nodes' centrality and farms' spreading
potential, thus limiting the efficiency of interventions based on partial
longitudinal information. By fully taking into account the longitudinal
dimension, we propose a novel definition of dynamical motifs that is able to
uncover the presence of a temporal arrow describing the evolution of the system
and the causality patterns of its displacements, shedding light on mechanisms
that may play a crucial role in the definition of preventive actions
- …