151 research outputs found

    Local topography increasingly influences the mass balance of a retreating cirque glacier

    Get PDF
    Local topographically driven processes – such as wind drifting, avalanching, and shading – are known to alter the relationship between the mass balance of small cirque glaciers and regional climate. Yet partitioning such local effects from regional climate influence has proven difficult, creating uncertainty in the climate representativeness of some glaciers. We address this problem for Sperry Glacier in Glacier National Park, USA, using field-measured surface mass balance, geodetic constraints on mass balance, and regional climate data recorded at a network of meteorological and snow stations. Geodetically derived mass changes during 1950–1960, 1960–2005, and 2005–2014 document average mass change rates during each period at −0.22 ± 0.12, −0.18 ± 0.05, and −0.10 ± 0.03 m w.e. yr−1, respectively. A correlation of field-measured mass balance and regional climate variables closely (i.e., within 0.08 m w.e. yr−1) predicts the geodetically measured mass loss from 2005 to 2014. However, this correlation overestimates glacier mass balance for 1950–1960 by +1.20 ± 0.95 m w.e. yr−1. Our analysis suggests that local effects, not represented in regional climate variables, have become a more dominant driver of the net mass balance as the glacier lost 0.50 km2 and retreated further into its cirque

    Adrenocortical tumors and pheochromocytoma/paraganglioma initially mistaken as neuroblastoma — experiences from the GPOH-MET registry

    Get PDF
    In children and adolescents, neuroblastoma (NBL), pheochromocytoma (PCC), and adrenocortical tumors (ACT) can arise from the adrenal gland. It may be difficult to distinguish between these three entities including associated extra-adrenal tumors (paraganglioma, PGL). Precise discrimination, however, is of crucial importance for management. Biopsy in ACT or PCC is potentially harmful and should be avoided whenever possible. We herein report data on 10 children and adolescents with ACT and five with PCC/PGL, previously mistaken as NBL. Two patients with adrenocortical carcinoma died due to disease progression. Two (2/9, missing data in one patient) patients with a final diagnosis of ACT clearly presented with obvious clinical signs and symptoms of steroid hormone excess, while seven patients did not. Blood analyses indicated increased levels of steroid hormones in one additional patient; however, urinary steroid metabolome analysis was not performed in any patient. Two (2/10) patients underwent tumor biopsy, and in two others tumor rupture occurred intraoperatively. In 6/10 patients, ACT diagnosis was only established by a reference pediatric pathology laboratory. Four (4/5) patients with a final diagnosis of PCC/PGL presented with clinical signs and symptoms of catecholamine excess. Urine tests indicated possible catecholamine excess in two patients, while no testing was carried out in three patients. Measurements of plasma metanephrines were not performed in any patient. None of the five patients with PCC/PGL received adrenergic blockers before surgery. In four patients, PCC/PGL diagnosis was established by a local pathologist, and in one patient diagnosis was revised to PGL by a pediatric reference pathologist. Genetic testing, performed in three out of five patients with PCC/PGL, indicated pathogenic variants of PCC/PGL susceptibility genes. The differential diagnosis of adrenal neoplasias and associated extra-adrenal tumors in children and adolescents may be challenging, necessitating interdisciplinary and multidisciplinary efforts. In ambiguous and/or hormonally inactive cases through comprehensive biochemical testing, microscopical complete tumor resection by an experienced surgeon is vital to preventing poor outcome in children and adolescents with ACT and/or PCC/PGL. Finally, specimens need to be assessed by an experienced pediatric pathologist to establish diagnosis

    Prognostic impact of MGMT promoter methylation and MGMT and CD133 expression in colorectal adenocarcinoma

    Get PDF
    Background: New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. Methods: MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. Results: Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. Conclusions: Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.This study was supported by FEDER, Plan Nacional de Investigación Científica, Desarrollo e Innovación Tecnológica (I + D + I), Instituto de Salud Carlos III (FIS) through Project no. PI11/01862 and by the Consejería de Salud de la Junta de Andalucía through Project no. PI-0338. The authors are grateful to the Biobank of the Andalusian Public Healthcare System (Granada, Spain) for invaluable assistance

    Developmental endothelial locus-1 protects from hypertension-induced cardiovascular remodeling via immunomodulation

    Get PDF
    The causative role of inflammation in hypertension-related cardiovascular diseases is evident and calls for development of specific immunomodulatory therapies. We tested the therapeutic efficacy and mechanisms of action of developmental endothelial locus-1 (DEL-1), an endogenous anti-inflammatory factor, in angiotensin-II (ANGII)- and DOCA (deoxycorticosterone acetate)-salt-induced cardiovascular organ damage and hypertension. By using mice with endothelial overexpression of DEL-1 (EC-Del1) and performing preventive and interventional studies by injecting recombinant DEL-1 in mice, we showed that DEL-1 improved endothelial function and abrogated aortic adventitial fibrosis, medial thickening and loss of elastin. DEL-1 also protected the mice from cardiac concentric hypertrophy, interstitial and perivascular coronary fibrosis and improved left-ventricular function and myocardial coronary perfusion. DEL-1 prevented aortic stiffness and abolished the progression of hypertension. Mechanistically, DEL-1 acted by inhibiting ιvβ3-integrin dependent activation of pro-MMP2 in mice and in human isolated aorta. Moreover, DEL-1 stabilized ιvβ3-integrin dependent CD25+FoxP3+ Treg numbers and IL-10 levels, which were associated with decreased pro-inflammatory cell recruitment of inflammatory cells and reduced production of pro-inflammatory cytokines in cardiovascular organs. The demonstrated effects and immune-modulating mechanisms of DEL-1 in abrogation of cardiovascular remodeling and progression of hypertension identify DEL-1 as a potential therapeutic factor

    Rheological and biological properties of a hydrogel support for cells intended for intervertebral disc repair

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cell-based approaches towards restoration of prolapsed or degenerated intervertebral discs are hampered by a lack of measures for safe administration and placement of cell suspensions within a treated disc. In order to overcome these risks, a serum albumin-based hydrogel has been developed that polymerizes after injection and anchors the administered cell suspension within the tissue.</p> <p>Methods</p> <p>A hydrogel composed of chemically activated albumin crosslinked by polyethylene glycol spacers was produced. The visco-elastic gel properties were determined by rheological measurement. Human intervertebral disc cells were cultured <it>in vitro </it>and <it>in vivo </it>in the hydrogel and their phenotype was tested by reverse-transcriptase polymerase chain reaction. Matrix production and deposition was monitored by immuno-histology and by biochemical analysis of collagen and glycosaminoglycan deposition. Species specific <it>in situ </it>hybridization was performed to discriminate between cells of human and murine origin in xenotransplants.</p> <p>Results</p> <p>The reproducibility of the gel formation process could be demonstrated. The visco-elastic properties were not influenced by storage of gel components. <it>In vitro </it>and <it>in vivo </it>(subcutaneous implants in mice) evidence is presented for cellular differentiation and matrix deposition within the hydrogel for human intervertebral disc cells even for donor cells that have been expanded in primary monolayer culture, stored in liquid nitrogen and re-activated in secondary monolayer culture. Upon injection into the animals, gels formed spheres that lasted for the duration of the experiments (14 days). The expression of cartilage- and disc-specific mRNAs was maintained in hydrogels <it>in vitro </it>and <it>in vivo</it>, demonstrating the maintenance of a stable specific cellular phenotype, compared to monolayer cells. Significantly higher levels of hyaluronan synthase isozymes-2 and -3 mRNA suggest cell functionalities towards those needed for the support of the regeneration of the intervertebral disc. Moreover, mouse implanted hydrogels accumulated 5 times more glycosaminoglycans and 50 times more collagen than the <it>in vitro </it>cultured gels, the latter instead releasing equivalent quantities of glycosaminoglycans and collagen into the culture medium. Matrix deposition could be specified by immunohistology for collagen types I and II, and aggrecan and was found only in areas where predominantly cells of human origin were detected by species specific <it>in situ </it>hybridization.</p> <p>Conclusions</p> <p>The data demonstrate that the hydrogels form stable implants capable to contain a specifically functional cell population within a physiological environment.</p

    G-protein signaling: back to the future

    Get PDF
    Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways

    Thiazolidinedione insulin sensitizers alter lipid bilayer properties and voltage-dependent sodium channel function: implications for drug discovery

    Get PDF
    The thiazolidinediones (TZDs) are used in the treatment of diabetes mellitus type 2. Their canonical effects are mediated by activation of the peroxisome proliferator–activated receptor γ (PPARγ) transcription factor. In addition to effects mediated by gene activation, the TZDs cause acute, transcription-independent changes in various membrane transport processes, including glucose transport, and they alter the function of a diverse group of membrane proteins, including ion channels. The basis for these off-target effects is unknown, but the TZDs are hydrophobic/amphiphilic and adsorb to the bilayer–water interface, which will alter bilayer properties, meaning that the TZDs may alter membrane protein function by bilayer-mediated mechanisms. We therefore explored whether the TZDs alter lipid bilayer properties sufficiently to be sensed by bilayer-spanning proteins, using gramicidin A (gA) channels as probes. The TZDs altered bilayer elastic properties with potencies that did not correlate with their affinity for PPARγ. At concentrations where they altered gA channel function, they also altered the function of voltage-dependent sodium channels, producing a prepulse-dependent current inhibition and hyperpolarizing shift in the steady-state inactivation curve. The shifts in the inactivation curve produced by the TZDs and other amphiphiles can be superimposed by plotting them as a function of the changes in gA channel lifetimes. The TZDs’ partition coefficients into lipid bilayers were measured using isothermal titration calorimetry. The most potent bilayer modifier, troglitazone, alters bilayer properties at clinically relevant free concentrations; the least potent bilayer modifiers, pioglitazone and rosiglitazone, do not. Unlike other TZDs tested, ciglitazone behaves like a hydrophobic anion and alters the gA monomer–dimer equilibrium by more than one mechanism. Our results provide a possible mechanism for some off-target effects of an important group of drugs, and underscore the importance of exploring bilayer effects of candidate drugs early in drug development

    Metabolomics, machine learning and immunohistochemistry to predict succinate dehydrogenase mutational status in phaeochromocytomas and paragangliomas

    Get PDF
    Phaeochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours with a hereditary background inover one-third of patients. Mutations in succinate dehydrogenase (SDH) genes increase the risk for PPGLs and severalother tumours. Mutations in subunit B (SDHB) in particular are a risk factor for metastatic disease, further highlight-ing the importance of identifying SDHx mutations for patient management. Genetic variants of unknown signi-cance, where implications for the patient and family members are unclear, are a problem for interpretation. Forsuch cases, reliable methods for evaluating protein functionality are required. Immunohistochemistry for SDHB(SDHB-IHC) is the method of choice but does not assess functionality at the enzymatic level. Liquid chromatogra-phy–mass spectrometry-based measurements of metabolite precursors and products of enzymatic reactions providean alternative method. Here, we compare SDHB-IHC with metabolite proling in 189 tumours from 187 PPGLpatients. Besides evaluating succinate:fumarate ratios (SFRs), machine learning algorithms were developed to estab-lish predictive models for interpreting metabolite data. Metabolite proling showed higher diagnostic specicitycompared to SDHB-IHC (99.2% versus 92.5%, p = 0.021), whereas sensitivity was comparable. Application of machine learning algorithms to metabolite proles improved predictive ability over that of the SFR, in particular forhard-to-interpret cases of head and neck paragangliomas (AUC 0.9821 versus 0.9613, p = 0.044). Importantly, thecombination of metabolite proling with SDHB-IHC has complementary utility, as SDHB-IHC correctly classied allbut one of the false negatives from metabolite proling strategies, while metabolite proling correctly classied allbut one of the false negatives/positives from SDHB-IHC. From 186 tumours with conrmed status of SDHx variantpathogenicity, the combination of the two methods resulted in 185 correct predictions, highlighting the benets ofboth strategies for patient management
    • …
    corecore