356 research outputs found

    Primjena bioraspoloživosti u postavljanju standarda za procjenu rizika: sugestije temeljene na seminaru s naglaskom na metale

    Get PDF
    Bioavailability is increasingly recognised as the key issue linking increased levels of toxicants with actually occurring adverse effects in ecosystems, whilst taking the modifying effects of the abiotic components of the environment into account. Various factors may affect bioavailability in the field, and often these factors are time- and space-dependent. This is one of the main reasons why legislators have been reluctant in implementing bioavailability in risk assessment procedures. Over the last few years, however, considerable scientific progress has been made with regard to better understanding of chemical and ecological mechanisms responsible for rendering chemicals available for uptake and toxicity. As a consequence, legislators face the challenge to anticipate the scientific progress and to implement bioavailability in legislation. This paper discusses the possibilities of implementing various methodologies within a maximum period of time of three years.Biološka dostupnost sve se više smatra ključnim problemom vezanim s povećanom razinom toksičnih tvari što izazivaju neželjene učinke u ekosustavima pri čemu se uzimaju u obzir promjenljivi učinci abiotičkih sustava okoliša. Mnogi čimbenici mogu utjecati na biološku dostupnost u prirodi. Ovi su čimbenici i vremenski i prostorno ovisni. To je i glavni razlog zašto su zakonodavci oklijevali primijeniti biološku dostupnost u procese procjene rizika. Proteklih je godina, međutim, napravljen značajan napredak s obzirom na bolje razumijevanje kemijskih i ekoloških mehanizama odgovornih za dostupnost kemikalija apsorpciji i za njihovu toksičnost. Kao posljedica toga zakonodavci se suočavaju s izazovom da prihvate znanstveni napredak i primijene biološku dostupnost u zakonima. Ovaj članak raspravlja mogućnosti raznih metodologija u razdoblju od tri godine

    Evaluating the combined toxicity of Cu and ZnO nanoparticles: utility of the concept of additivity and a nested experimental design

    Get PDF
    Little is understood regarding the effects of mixtures of different metal-based nanoparticles (NPs). Using concentration-addition (CA) and independent-action (IA) models, we evaluated the combined toxicity of Cu and ZnO NPs based on five nested combinations, i.e., Cu(NO3)2–CuNPs, Zn(NO3)2–ZnONPs, Cu(NO3)2–ZnONPs, Zn(NO3)2–CuNPs, and CuNPs–ZnONPs on root elongation of Lactuca sativa L. The CA and IA models performed equally well in estimating the toxicity of mixtures of Cu(NO3)2–CuNPs, Zn(NO3)2–ZnONPs, and Zn(NO3)2–CuNPs, whereas the IA model was significantly better for fitting the data of Cu(NO3)2–ZnONPs and CuNPs–ZnONPs mixtures. Dissolved Cu proved to be the most toxic metal species to lettuce roots in the tests, followed by Cu NPs, dissolved Zn, and ZnO NPs, respectively. An antagonistic effect was observed for ZnO NPs on the toxicity of Cu NPs. This antagonistic effect is expected to be the result of interactions between dissolved Cu and dissolved Zn, particulate Zn and dissolved Zn, particulate Cu and dissolved Zn, and between particulate Zn and dissolved Cu. In general terms, assuming additivity gives a first indication of the combined toxicity with soluble and insoluble metal particles, both being important in driving the toxicity of metal-based NPs to higher plants

    Species-dependent responses of crop plants to polystyrene microplastics

    Get PDF
    Abstract: Only recently there has been a strong focus on the impacts of microplastics on terrestrial crop plants. This study aims to examine and compare the effects of microplastics on two monocotyledonous (barley, Hordeum vulgare and wheat, Triticum aestivum), and two dicotyledonous (carrot, Daucus carota and lettuce, Lactuca sativa) plant species through two complimentary experiments. First, we investigated the effects of low, medium, and high (103, 105, 107 particles per mL) concentrations of 500 nm polystyrene microplastics (PS-MPs) on seed germination and early development. We found species-dependent effects on the early development, with microplastics only significantly affecting lettuce and carrot. When acutely exposed during germination, PS-MPs significantly delayed the germination of lettuce by 24%, as well as promoted the shoot growth of carrot by 71% and decreased its biomass by 26%. No effect was recorded on monocot species. Secondly, we performed a chronic (21 d) hydroponic experiment on lettuce and wheat. We observed that PS-MPs significantly reduced the shoot growth of lettuce by up to 35% and increased its biomass by up to 64%, while no record was reported on wheat. In addition, stress level indicators and defence mechanisms were significantly up-regulated in both lettuce and wheat seedlings. Overall, this study shows that PS-MPs affect plant development: impacts were recorded on both germination and growth for dicots, and responses identified by biochemical markers of stress were increased in both lettuce and wheat. This highlights species-dependent effects as the four crops were grown under identical conditions to allow direct comparison. For future research, our study emphasizes the need to focus on crop specific effects, while also working towards knowledge of plastic-induced impacts at environmentally relevant conditions

    A method to assess the relevance of nanomaterial dissolution during reactivity testing

    Get PDF
    The reactivity of particle surfaces can be used as a criterion to group nanoforms (NFs) based on similar potential hazard. Since NFs may partially or completely dissolve over the duration of the assays, with the ions themselves inducing a response, reactivity assays commonly measure the additive reactivity of the particles and ions combined. Here, we determine the concentration of ions released over the course of particle testing, and determine the relative contributions of the released ions to the total reactivity measured. We differentiate three classes of reactivity, defined as being A) dominated by particles, B) additive of particles and ions, or C) dominated by ions. We provide examples for each class by analyzing the NF reactivity of Fe2O3, ZnO, CuO, Ag using the ferric reduction ability of serum (FRAS) assay. Furthermore, another two reactivity tests were performed: Dichlorodihydrofluorescin diacetate (DCFH2‑DA) assay and electron paramagnetic resonance (EPR) spectroscopy. We compare assays and demonstrate that the dose‑response may be almost entirely assigned to ions in one assay (CuO in DCFH2‑DA), but to particles in others (CuO in EPR and FRAS). When considering this data, we conclude that one cannot specify the contribution of ions to NF toxicity for a certain NF, but only for a certain NF in a specific assay, medium and dose. The extent of dissolution depends on the buffer used, particle concentration applied, and duration of exposure. This culminates in the DCFH2‑DA, EPR, FRAS assays being performed under different ion‑to‑particle ratios, and differing in their sensitivity towards reactions induced by either ions or particles. If applied for grouping, read‑across, or other concepts based on the similarity of partially soluble NFs, results on reactivity should only be compared if measured by the same assay, incubation time, and dose range

    Similarity assessment of metallic nanoparticles within a risk assessment framework: a case study on metallic nanoparticles and lettuce

    Get PDF
    Similarity assessment is one of the means of optimally using scarcely available experimental data on the fate and hazards of nanoforms (NFs) for regulatory purposes. For a set of NFs that are shown to be similar it is allowed in a regulatory context to apply the information available on any of the NFs within the group to the whole set of NFs. Obviously, a proper justification for such a similarity assessment is to be provided. Within the context of exemplifying such a justification, a case study was performed aimed at assessing the similarity of a set of spherical metallic NFs that different with regard to chemical composition (three metals) and particle size (three different sizes). The endpoints of assessment were root elongation and biomass increase of lettuce (Lactuca sativa L.) seedlings and exposure assessment was performed in order to express the actual exposure concentration in terms of time-weighted average particle concentrations. The results of the study show that for the specific endpoints assessed, chemical composition is driving NF toxicity and this is mostly due to impacts on the fate of the NFs. On the other hand, particle size of Cu NFs had a negligible impact on the dose-response relationships for the specific endpoints assessed. It is thus concluded that hazard data available on spherical Cu NF tested in our case can be used to inform on the hazards of any spherical Cu NF within the size range of 25–100 nm, but only applies for the certain endpoints. Also, toxicity data for the Cu2+-ion are suited for such a similarity assessment

    Ototoxicity of polystyrene nanoplastics in mice, HEI-OC1 cells and zebrafish

    Get PDF
    Polystyrene nanoplastics are a novel class of pollutants. They are easily absorbed by living organisms, and their potential toxicity has raised concerns. However, the impact of polystyrene nanoplastics on auditory organs remains unknown. Here, our results showed that polystyrene nanoplastics entered the cochlea of mice, HEI-OC1 cells, and lateral line hair cells of zebrafish, causing cellular injury and increasing apoptosis. Additionally, we found that exposure to polystyrene nanoplastics resulted in a significant elevation in the auditory brainstem response thresholds, a loss of auditory sensory hair cells, stereocilia degeneration and a decrease in expression of Claudin-5 and Occludin proteins at the blood-lymphatic barrier in mice. We also observed a significant decrease in the acoustic alarm response of zebrafish after exposure to polystyrene nanoplastics. Mechanistic analysis revealed that polystyrene nanoplastics induced up-regulation of the Nrf2/HO-1 pathway, increased levels of malondialdehyde, and decreased superoxide dismutase and catalase levels in cochlea and HEI-OC1 cells. Furthermore, we observed that the expression of ferroptosis-related indicators GPX4 and SLC7A11 decreased as well as increased expression of ACLS4 in cochlea and HEI-OC1 cells. This study also revealed that polystyrene nanoplastics exposure led to increased expression of the inflammatory factors TNF-α, IL-1β and COX2 in cochlea and HEI-OC1 cells. Further research found that the cell apoptosis, ferroptosis and inflammatory reactions induced by polystyrene nanoplastics in HEI-OC1 cells was reversed through the pretreatment with N-acetylcysteine, a reactive oxygen species inhibitor. Overall, our study first discovered and systematically revealed the ototoxicity of polystyrene nanoplastics and its underlying mechanism

    Importance of exposure dynamics of metal-based nano-ZnO, -Cu and -Pb governing the metabolic potential of soil bacterial communities.

    Get PDF
    Metal-based engineered nanomaterials (ENMs) are known to affect bacterial processes and metabolic activities. While testing their negative effects on biological components, studies traditionally rely on initial exposure concentrations and thereby do not take into consideration the dynamic behavior of ENMs that ultimately determines exposure and toxicity (e.g. ion release). Moreover, functional responses of soil microbial communities to ENMs exposure can be caused by both the particulate forms and the ionic forms, yet their relative contributions remain poorly understood. Therefore, we investigated the dynamic changes of exposure concentrations of three different types of ENMs (nano-ZnO, -Cu and -Pb) and submicron particles (SMPs) in relation to their impact on the capacity of soil bacterial communities to utilize carbon substrates. The different ENMs were chosen to differ in dissolution potential. The dynamic exposures of ENMs were considered using a time weighted average (TWA) approach. The joint toxicity of the particulate forms and the ionic forms of ENMs was evaluated using a response addition model. Our results showed that the effect concentrations of spherical nano-ZnO, -Cu and SMPs, and Pb-based perovskites expressed as TWA were lower than expressed as initial concentrations. Both particulate forms and ionic forms of spherical 18nm, 43nm nano-ZnO and 50nm, 100nm nano-Cu contribute to the overall response at the EC50 levels. The particulate forms for 150nm, 200nm and 900nm ZnO SMPs and rod-shaped 78nm nano-Cu mainly affected the soil microbial metabolic potential, while the Cu ions released from spherical 25nm nano-Cu, 500nm Cu SMPs and Pb ions released from perovskites mainly described the effects to bacterial communities. Our results indicate that the dynamic exposure of ENMs and relative contributions of particles and ions require consideration in order to pursue a naturally realistic assessment of environmental risks of metal-based ENMs
    corecore