24 research outputs found

    Atlanta ariejansseni, a new species of shelled heteropod from the Southern Subtropical Convergence Zone (Gastropoda, Pterotracheoidea)

    Get PDF
    The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastropods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The aragonite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidification and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been employed to improve the assessment of species boundaries, which give a more accurate picture of species distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA barcoding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans suggesting that this species has a very narrow latitudinal distribution (37–48°S). Atlanta ariejansseni sp. n. was found to be relatively abundant (up to 2.3 specimens per 1000 m3 water) within this narrow latitudinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical Convergence Zone and has a high tolerance to the varying ocean parameters in this region

    Pteropods are excellent recorders of surface temperature and carbonate ion concentration

    Get PDF
    Pteropods are among the first responders to ocean acidification and warming, but have not yet been widely explored as carriers of marine paleoenvironmental signals. In order to characterize the stable isotopic composition of aragonitic pteropod shells and their variation in response to climate change parameters, such as seawater temperature, pteropod shells (Heliconoides inflatus) were collected along a latitudinal transect in the Atlantic Ocean (31° N to 38° S). Comparison of shell oxygen isotopic composition to depth changes in the calculated aragonite equilibrium oxygen isotope values implies shallow calcification depths for H. inflatus (75 m). This species is therefore a good potential proxy carrier for past variations in surface ocean properties. Furthermore, we identified pteropod shells to be excellent recorders of climate change, as carbonate ion concentration and temperature in the upper water column have dominant influences on pteropod shell carbon and oxygen isotopic composition. These results, in combination with a broad distribution and high abundance, make the pteropod species studied here, H. inflatus, a promising new proxy carrier in paleoceanography

    The origin and diversification of pteropods precede past perturbations in the Earth’s carbon cycle

    Get PDF
    Open AccessPteropods are a group of planktonic gastropods that are widely regarded as biological indicators for assessing the impacts of ocean acidification. Their aragonitic shells are highly sensitive to acute changes in ocean chemistry. However, to gain insight into their potential to adapt to current climate change, we need to accurately reconstruct their evolutionary history and assess their responses to past changes in the Earth’s carbon cycle. Here, we resolve the phylogeny and timing of pteropod evolution with a phylogenomic dataset (2,654 genes) incorporating new data for 21 pteropod species and revised fossil evidence. In agreement with traditional taxonomy, we recovered molecular support for a division between “sea butterflies” (Thecosomata; mucus-web feeders) and “sea angels” (Gymnosomata; active predators). Molecular dating demonstrated that these two lineages diverged in the early Cretaceous, and that all main pteropod clades, including shelled, partially-shelled, and unshelled groups, diverged in the mid- to late Cretaceous. Hence, these clades originated prior to and subsequently survived major global change events, including the Paleocene–Eocene Thermal Maximum (PETM), the closest analog to modern-day ocean acidification and warming. Our findings indicate that planktonic aragonitic calcifiers have shown resilience to perturbations in the Earth’s carbon cycle over evolutionary timescales.Copyright © 2020 the Author(s). Published by PNAS. This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY)

    Evidence for the validity of Protatlanta sculpta (Gastropoda: Pterotracheoidea)

    Get PDF
    The genus Protatlanta is thought to be monotypic and is part of the Atlantidae, a family of shelled heteropods. These microscopic planktonic gastropods are poorly known, although research on their ecology is now increasing in response to concerns about the effects of ocean acidification on calcareous plankton. A correctly implemented taxonomy of the Atlantidae is fundamental to this progressing field of research and it requires much attention, particularly using integrated molecular and morphological techniques. Here we use DNA barcoding, shell morphology and biogeography to show that the genus Protatlanta includes at least two valid species in the Atlantic Ocean. Protatlanta souleyeti and Protatlanta sculpta were found to be separate species, with different shell morphology and separated by a K2P genetic distance of 19% sequence divergence at the Cytochrome Oxidase 1 gene. This evidence supports the revival of the species name P. sculpta, which was described by Issel in 1911, but has not been recognised as a valid species since 1915

    Time-calibrated molecular phylogeny of pteropods

    Get PDF
    © 2017 Burridge et al. This is an open access article distributed under the terms of the [4.0] Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. The attached file is the published version of the article

    Barcoding of Arrow Worms (Phylum Chaetognatha) from Three Oceans: Genetic Diversity and Evolution within an Enigmatic Phylum

    Get PDF
    Arrow worms (Phylum Chaetognatha) are abundant planktonic organisms and important predators in many food webs; yet, the classification and evolutionary relationships among chaetognath species remain poorly understood. A seemingly simple body plan is underlain by subtle variation in morphological details, obscuring the affinities of species within the phylum. Many species achieve near global distributions, spanning the same latitudinal bands in all ocean basins, while others present disjunct ranges, in some cases with the same species apparently found at both poles. To better understand how these complex evolutionary and geographic variables are reflected in the species makeup of chaetognaths, we analyze DNA barcodes of the mitochondrial cytochrome oxidase c subunit I (COI) gene, from 52 specimens of 14 species of chaetognaths collected mainly from the Atlantic Ocean. Barcoding analysis was highly successful at discriminating described species of chaetognaths across the phylum, and revealed little geographical structure. This barcode analysis reveals hitherto unseen genetic variation among species of arrow worms, and provides insight into some species relationships of this enigmatic group

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Phylogeography of the tropical planktonic foraminifera lineage Globigerinella reveals isolation inconsistent with passive dispersal by ocean currents

    Get PDF
    Morphologically defined species of marine plankton often harbor a considerable level of cryptic diversity. Since many morphospecies show cosmopolitan distribution, an understanding of biogeographic and evolutionary processes at the level of genetic diversity requires global sampling. We use a database of 387 single-specimen sequences of the SSU rDNA of the planktonic foraminifera Globigerinella as a model to assess the biogeographic and phylogenetic distributions of cryptic diversity in marine microplankton on a global scale. Our data confirm the existence of multiple, well isolated genetic lineages. An analysis of their abundance and distribution indicates that our sampling is likely to approximate the actual total diversity. Unexpectedly, we observe an uneven allocation of cryptic diversity among the phylogenetic lineages. We show that this pattern is neither an artifact of sampling intensity nor a function of lineage age. Instead, we argue that it reflects an ongoing speciation process in one of the three major lineages. Surprisingly, four of the six genetic types in the hyperdiverse lineage are biogeographically restricted to the Indopacific. Their mutual co-occurrence and their hierarchical phylogenetic structure provide no evidence for an origin through sudden habitat fragmentation and their limitation to the Indopacific challenges the view of a global gene flow within the warm-water provinces. This phenomenon shows that passive dispersal is not sufficient to describe the distribution of plankton diversity. Rather, these organisms show differentiated distribution patterns shaped by species interactions and reflecting phylogenetic contingency with unique histories of diversification rates
    corecore