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Abstract
The Atlantidae (shelled heteropods) is a family of microscopic aragonite shelled holoplanktonic gastro-
pods with a wide biogeographical distribution in tropical, sub-tropical and temperate waters. The arago-
nite shell and surface ocean habitat of the atlantids makes them particularly susceptible to ocean acidifica-
tion and ocean warming, and atlantids are likely to be useful indicators of these changes. However, we still 
lack fundamental information on their taxonomy and biogeography, which is essential for monitoring the 
effects of a changing ocean. Integrated morphological and molecular approaches to taxonomy have been 
employed to improve the assessment of species boundaries, which give a more accurate picture of species 
distributions. Here a new species of atlantid heteropod is described based on shell morphology, DNA bar-
coding of the Cytochrome Oxidase I gene, and biogeography. All specimens of Atlanta ariejansseni sp. n. 
were collected from the Southern Subtropical Convergence Zone of the Atlantic and Indo-Pacific oceans 
suggesting that this species has a very narrow latitudinal distribution (37–48°S). Atlanta ariejansseni sp. n. 
was found to be relatively abundant (up to 2.3 specimens per 1000 m3 water) within this narrow latitu-
dinal range, implying that this species has adapted to the specific conditions of the Southern Subtropical 
Convergence Zone and has a high tolerance to the varying ocean parameters in this region.
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Introduction

The Southern Ocean Sub-Tropical Front (STF) is the boundary between the colder, 
fresher Sub-Antarctic Zone (SAZ) and the warmer, more saline subtropical waters to 
the north (Orsi et al. 1995). The Southern Subtropical Convergence Zone (SSTC) 
is a narrow region along the STF with highly variable physical parameters experienc-
ing strong currents and large gradients of salinity and temperature (Longhurst 1998, 
Graham and Boer 2013). The STF acts as a dispersal barrier for many zooplankton 
taxa, resulting in changes in genetic population structure and biomass across this front 
(Labat et al. 2001, Hiral et al. 2015, Burridge et al. in review a, b). This region is also 
at a high risk from ocean changes, particularly ocean acidification, because of the high 
solubility of CO2 in cold water (Roberts et al. 2014).

The shelled atlantid heteropods are likely to be particularly susceptible to ocean 
acidification. Although, to date, there have been no studies into the effects of ocean 
changes upon atlantids, we can expect that they will react in a similar way to the 
shelled pteropods (Thecosomata). While not closely related, atlantids share many of 
the characteristic features that make shelled pteropods vulnerable to ocean acidifica-
tion. These include living in the upper layers of the ocean, one of the areas most af-
fected, and producing a very small (up to ~10 mm), thin shell of aragonite, which is 
particularly vulnerable to dissolution in waters undersaturated with carbonate (Fabry 
et al. 2008). In pteropods, synergistic effects of decreasing carbonate saturation and 
increasing temperature has been shown to reduce the ability to produce aragonite 
shells (e.g. Lischka and Riebesell 2012). These effects have already been recorded 
in natural populations living at high latitudes (Bednaršek et al. 2012), which are 
predicted to be affected first (Steinacher et al. 2009). However, improvements in 
taxonomy are extremely important to understanding the effects of these changes on 
holoplanktonic gastropods. Roberts et al. (2014) found that different forms of the 
pteropod species Limacina helicina (Phipps, 1774), living in the same area of the 
Southern Ocean, showed opposing trends in shell weight over a long-term study. 
This demonstrates the importance of assessing species boundaries in order to fully 
understand the effects of a changing ocean.

Here an integrated morphological and molecular approach is used to present a 
new species of atlantid heteropod, Atlanta ariejansseni, that is restricted to a narrow 
transitional zone of only 11° of latitude within the SSTC, but has a circumpolar 
longitudinal range. In common with other sub-polar planktonic gastropod spe-
cies, A. ariejansseni reaches relatively high abundances compared to other atlantids 
and is the dominant atlantid species living in this area. Most atlantid species are 
thought to be restricted to warmer tropical and sub-tropical waters, with only one 
other species, Atlanta californiensis Seapy & Richter, 1993, showing a preference 
for cold water regions in the California Current. Atlanta ariejansseni is the only 
atlantid species specific to sub-polar waters and that appears to be tolerant of such 
a variable environment.
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Methods

All specimens examined and included in this study were recorded within the SSTC, 
between 37°S and 48°S (Fig. 1). A total of 184 specimens of A. ariejansseni were ex-
amined from a number of sources (Table 1). From the Atlantic Ocean, 164 specimens 
for combined molecular and morphological analysis were collected during the Atlantic 
Meridional Transects AMT20 and AMT24 (Burridge et al. in review a). On both 
cruises, specimens were caught using a WP2 bongo net with an aperture diameter of 
0.71 m and a mesh of 200 μm. Specimens from AMT24 were fixed and preserved in 
96% ethanol and stored at -20 °C prior to DNA barcoding. Specimens from AMT20 
were fixed and stored in 96% ethanol and stored at room temperature. Storage at 
room temperature is not optimal for the preservation of DNA; therefore, specimens 
from AMT20 were not used for DNA barcoding. From the Pacific Ocean, two further 
specimens, collected by Erica Goetze during the DRFT cruise of the RV Revelle in 
2001, were used for molecular analysis (Table 1). Finally, 18 Indo-Pacific specimens 
were examined from sediment trap samples, collected from south of Tasmania between 
1997–2006 by the Antarctic Climate and Ecosystems Cooperative Research Centre 
(Bray et al. 2000, Roberts et al. 2011). Upon removal from the sediment traps, speci-
mens were washed in buffered peroxide to remove organic matter and dried.

Two published records of atlantids are also available for this region and both are 
considered here to include misidentified specimens of A. ariejansseni sp. n. Howard 
et al. (2011) recorded 14 specimens of Atlanta gaudichaudi Gray, 1850 in net hauls 
and a sediment trap positioned south of Tasmania. However, specimens from the 
same sediment traps (Roberts et al. 2011) that were re-examined for this study were 
also originally misidentified as A. gaudichaudi. A single image of a specimen caught 
by Howard et al. (2011) is morphologically consistent with A. ariejansseni, but is too 
small to identify with certainty.

Pilkington (1970) described a single species of atlantid, provisionally identified as 
Atlanta helicinoidea Gray, 1850, off-shore of Taiaroa Head, New Zealand. Pilkington 
(1970) found it difficult to identify specimens to species level, noting that the mor-
phology did not agree perfectly with any of the atlantid species that had already been 
described. The detailed descriptions and figures presented by Pilkington (1970) un-
questionably resemble the shell morphology of A. ariejansseni. Moreover, descriptions 
of the juvenile stages made by Pilkington (1970) match the juvenile specimens that 
were examined for this study. Therefore, the Atlanta specimens described by Pilking-
ton (1970) are considered to be A. ariejansseni.

DNA barcoding

A total of 17 undamaged adult (N = 9) and juvenile (N = 8) specimens of A. arie-
jansseni were selected from samples collected during AMT24 and DRFT research 
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Table 2. Original specimen codes and GenBank accession numbers for all specimens included in the 

phylogenetic analysis (Fig. 2).

Species Specimen code or reference GenBank accession number

Atlanta ariejansseni

Aari_AMT24_26_01 KX343177
Aari_AMT24_26_02 KX343178
Aari_AMT24_27_01 KX343179
Aari_AMT24_27_02 KX343180
Aari_AMT24_27_03 KX343181
Aari_AMT24_27_04 KX343182
Aari_AMT24_27_05 KX343183
Aari_AMT24_28_01 KX343184
Aari_AMT24_29_01 KX343185
Aari_AMT24_29_02 KX343186
Aari_AMT24_29_03 KX343187
Aari_AMT24_29_04 KX343188
Aari_AMT24_29_05 KX343189
Aari_AMT24_29_06 KX343190
Aari_AMT24_29_07 KX343191
Aari_DRFT_14_01 KX343192
Aari_DRFT_14_02 KX343193

Atlanta selvagensis

Asel_AMT24_05_03 KX343194
Asel_AMT24_06_01 KX343195
Asel_AMT24_06_02 KX343196
Asel_AMT24_06_04 KX343197
Asel_AMT24_14_02 KX343198

Atlanta gaudichaudi
Jennings et al. 2010

FJ876837
FJ876839

Oxygyrus inflatus
FJ876848.1
FJ876849.1

Protatlanta souleyeti Wall-Palmer et al. in press

KU841501
KU841495
KU841506
KU841502
KU841497
KU841494
KU841496
KU841493

Pterotrachea coronata

Jennings et al. 2010

FJ876852.1
FJ876853.1

Pterotrachea hippocampus
FJ876854.1
FJ876855.1

Firoloida desmarestia
FJ876850.1
FJ876851.1

http://www.ncbi.nlm.nih.gov/nuccore/KX343177
http://www.ncbi.nlm.nih.gov/nuccore/KX343178
http://www.ncbi.nlm.nih.gov/nuccore/KX343179
http://www.ncbi.nlm.nih.gov/nuccore/KX343180
http://www.ncbi.nlm.nih.gov/nuccore/KX343181
http://www.ncbi.nlm.nih.gov/nuccore/KX343182
http://www.ncbi.nlm.nih.gov/nuccore/KX343183
http://www.ncbi.nlm.nih.gov/nuccore/KX343184
http://www.ncbi.nlm.nih.gov/nuccore/KX343185
http://www.ncbi.nlm.nih.gov/nuccore/KX343186
http://www.ncbi.nlm.nih.gov/nuccore/KX343187
http://www.ncbi.nlm.nih.gov/nuccore/KX343188
http://www.ncbi.nlm.nih.gov/nuccore/KX343189
http://www.ncbi.nlm.nih.gov/nuccore/KX343190
http://www.ncbi.nlm.nih.gov/nuccore/KX343191
http://www.ncbi.nlm.nih.gov/nuccore/KX343192
http://www.ncbi.nlm.nih.gov/nuccore/KX343193
http://www.ncbi.nlm.nih.gov/nuccore/KX343194
http://www.ncbi.nlm.nih.gov/nuccore/KX343195
http://www.ncbi.nlm.nih.gov/nuccore/KX343196
http://www.ncbi.nlm.nih.gov/nuccore/KX343197
http://www.ncbi.nlm.nih.gov/nuccore/KX343198
http://www.ncbi.nlm.nih.gov/nuccore/FJ876837
http://www.ncbi.nlm.nih.gov/nuccore/FJ876839
http://www.ncbi.nlm.nih.gov/nuccore/FJ876848.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876849.1
http://www.ncbi.nlm.nih.gov/nuccore/KU841501
http://www.ncbi.nlm.nih.gov/nuccore/KU841495
http://www.ncbi.nlm.nih.gov/nuccore/KU841506
http://www.ncbi.nlm.nih.gov/nuccore/KU841502
http://www.ncbi.nlm.nih.gov/nuccore/KU841497
http://www.ncbi.nlm.nih.gov/nuccore/KU841494
http://www.ncbi.nlm.nih.gov/nuccore/KU841496
http://www.ncbi.nlm.nih.gov/nuccore/KU841493
http://www.ncbi.nlm.nih.gov/nuccore/FJ876852.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876853.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876854.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876855.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876850.1
http://www.ncbi.nlm.nih.gov/nuccore/FJ876851.1
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Table 3. Average K2P distances between A. ariejansseni and the Atlantidae species A. gaudichaudi, 

A. selvagensis, Protatlanta souleyeti and Oxygyrus inflatus.

A. ariejansseni A. gaudichaudi A. selvagensis P. souleyeti
A. ariejansseni (n = 17)
A. gaudichaudi (n = 2) 0,25
A. selvagensis (n = 5) 0,14 0,27
P. souleyeti (n = 6) 0,26 0,24 0,24
O. inflatus (n = 2) 0,22 0,25 0,25 0,25

cruises. DNA barcoding was also carried out for the morphologically similar species 
Atlanta selvagensis de Vera & Seapy, 2006 from the Atlantic Ocean. Five specimens 
of adult (N = 2) and juvenile (N = 3) A. selvagensis were selected from AMT24 sites 
(St. 5, 34.75°N, 26.62°W; St. 6, 31.30°N, 27.73°W and St. 14, 3.8°N, 25.78°W). 
All specimens were imaged prior to analysis using a Zeiss automated z-stage light 
microscope. DNA was extracted from whole specimens, using the NucleoMag 96 
Tissue kit by Macherey-Nagel on a Thermo Scientific KingFisher Flex magnetic bead 
extraction robot, with a final elution volume of 75 μl. A standard Cytochrome Oxi-
dase I (COI) barcoding fragment (Hebert et al. 2003) was amplified using primers 
jgLCO1490 and jgHCO2198 (Geller et al. 2013). Primers were tailed with M13F 

Figure 3. Abundance and pie charts of relative abundance (%) of atlantids at southern Atlantic stations 
of the AMT24 cruise.
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and M13R for sequencing (Messing 1983). PCR reactions contained 17.75 μl mQ, 
2.5 μl 10x PCR buffer CL, 0.5 μl 25mM MgCl2, 0.5 μl 100mM BSA, 1.0 μl 10 mM 
of each primer, 0.5 μl 2.5 mM dNTPs and 0.25 μl 5U Qiagen Taq, with 1.0 μl of 
template DNA, which was diluted 10 or 100 times for some samples. PCR was per-
formed using an initial denaturation step of 180 s at 94 °C, followed by 40 cycles of 
15 s at 94 °C, 30 s at 50 °C and 40 s at 72 °C, and finishing with a final extension of 
300 s at 72 °C and pause at 12 °C. Sequencing was carried out by Macrogen, Europe.

All sequences were aligned and edited using the ClustalW algorithm in MEGA 6 
(Tamura et al. 2013) and submitted to GenBank (Fig. 2, Table 2). Previously pub-
lished COI sequences from GenBank (Jennings et al. 2010, Wall-Palmer et al. in 
press), identified as Atlanta inclinata Gray, 1850, Oxygyrus inflatus Benson, 1835, Firo-
loida desmarestia Lesueur, 1817, Pterotrachea hippocampus Philippi, 1836, Pterotrachea 
coronata Forsskål in Niebuhr, 1775 and Protatlanta souleyeti (Smith, 1888), were add-
ed to represent the families and genera most closely related to A. ariejansseni. Based on 
these data, a maximum-likelihood tree was constructed in MEGA6 using nucleotide 
sequences in a General Time Reversible model with gamma distribution and invariant 
sites (GTR+G+I) and 1000 bootstraps. Kimura-2-parameter (K2P) genetic distances 
were calculated between and within species belonging to the family Atlantidae using 
MEGA 6 (Tamura et al. 2013).

Results and discussion

Genetic diversity

DNA barcoding of seventeen A. ariejansseni specimens and five A. selvagensis speci-
mens from the southern Atlantic (N = 15, N = 5 respectively) and Pacific (N = 2, N 
= 0 respectively) oceans shows that A. ariejansseni forms a monophyletic group with a 
bootstrap support of 100% (Fig. 2). Atlanta ariejansseni has an average K2P distance 
of 0.14–0.25 from other species in the genus Atlanta and 0.22–0.26 from other genera 
of Atlantidae (Oxygyrus and Protatlanta respectively, Table 3).

Biogeography

All known specimens of A. ariejansseni were collected between 37°S and 48°S (Table 
1) within the SSTC in water temperatures of 6.5–14.3°C (Fig. 1). Along the AMT24 
transect, the most northern occurrence of the key thecosome pteropod species Limaci-
na helicina antarctica Woodward, 1854 was at St. 26 (31.34°S), the same station as A. 
ariejansseni (Burridge et al. in review a). However, the range of L. helicina antarctica 
extends much further south than A. ariejansseni, which, along with all other atlantid 
species, were not found at sites south of 48°S. In the Atlantic Ocean, A. ariejansseni was 
found at four AMT24 stations (St. 26–29) between 37°S and 43°S. Atlanta ariejans-
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seni was found to be the most abundant atlantid at these stations and the only species 
present at stations 26 and 28 (Fig. 3). At a latitude of -41.47°S, A. ariejansseni reached 
a maximum abundance of 2.3 specimens per 1000 m3.

Specimens of A. ariejansseni have been caught at different times of the day in the up-
per 372 m of the water column (Table 1). Low numbers of specimens were caught at the 
ocean surface (20–70 m) at all times of the day. However, highest numbers were caught 
in 228–253 m water depth at night between 03:00 and 04:00 local time (Table 1).

Systematics

Phylum MOLLUSCA
Class GASTROPODA Cuvier, 1797
Subclass CAENOGASTROPODA Cox, 1960
Order LITTORINIMORPHA Golikov & Starobogatov, 1975
Superfamily PTEROTRACHEOIDEA Rafinesque, 1814
Family ATLANTIDAE Rang, 1829
Genus Atlanta Lesueur, 1817

Atlanta ariejansseni sp. n.
http://zoobank.org/7E9AEE5E-5F7F-480C-9673-89A3E9979FE9
Figures 4–6

Type locality. AMT24 station 28, 41.48°S, 33.86°W. Specimen collected on the 27th 
October 2014 at 02:59–03:48 local time at a water depth of 0–228 m.

Holotype. Figure 5j–l. Housed at the Naturalis Biodiversity Center, Leiden, ac-
cession number RMNH.5004155. For specimen dimensions, see Table 4. Collected 
by Alice K Burridge.

Paratypes. Figure 4a–i and k. See Table 4 for details.
Additional material. See Table 1.
Diagnosis. Atlanta species with a spire of 3 ¼ to 3 ½ whorls. The spire is mod-

erately high, rounded and with deep sutures and covered in small, low projections 
approximately arranged in lines.

Description. Shell small and transparent, with adult shells ranging from 2012 to 
3059 μm in diameter excluding the keel and 2237 to 3370 μm including the keel in 
examined material. The shell inflates at 3 ¼ to 3 ½ whorls and has a total of 4 ½ to 4 
¾ whorls. The keel begins at 3 ¾ whorls and inserts between the final whorl and the 
spire for around ¼ whorl. The keel is tall and gradually truncated with a yellow-brown 
keel base. The keel often has a slightly undulating shape. The soft tissue varies greatly 
in colour among individuals from mottled white to orange-pink and dark grey (Fig. 5). 
Some specimens were observed to have a pearlescent lustre to the shell surface.

The spire is moderately high, well-visible in apertural view, with deep sutures, giving 
the whorls a rounded appearance (Fig. 6). The spire surface is ornamented with numer-

http://zoobank.org/7E9AEE5E-5F7F-480C-9673-89A3E9979FE9
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Figure 4. SEM images of A. ariejansseni. Aari_AMT20_33_01 (a, c–d); Aari_AMT20_33_02 (b, 
e–f); Aari_47S_01 (g); Aari_47S_02 (h); Aari_AMT20_74_01 (i); Aari_AMT20_74_05 (j); Aari_
AMT20_74_02 (k). Specimens g and h were imaged using low vacuum SEM and were not sputter coated.
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Figure 5. Stacking light microscopy images of A. ariejansseni showing variations in tissue colour. Aari_
AMT24_29_01 (a, g); Aari _AMT24_27_01 (b, h); Aari_AMT24_26_01 (c); Aari_AMT24_26_02 (d); 
Aari_AMT24_27_04 (e); Aari_AMT24_27_04 (f); Aari_AMT24_28_01 (i); Aari_AMT24_28_01 (j–l); 
Radula of Aari_AMT20_33_03 (m–n).
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Figure 6. X-ray tomography of A. ariejansseni specimen Aari_AMT20_33_03.

ous low projections in the form of punctae roughly arranged in 9–12 spiral rows over the 
surface of whorls 2–4 (Fig. 4). These low projections can vary in their spatial coverage, 
from closely spaced to sparse (Fig. 4g–h). This gives the spire a rough appearance under 
a light microscope. The projections are clearly visible using SEM (Fig. 4). No other 
species of atlantid has been found with this type of micro-ornamentation in the inner 
spire. Juvenile specimens have approximately six fine lines of small projections running 
around the side of the shell, although these are not always obvious under light microsco-
py. Around the base of the juvenile shell the projections can become so closely positioned 
that they become irregular, frequently interrupted spiral lines in some specimens (Fig. 4j)
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The operculum is type c, the radula is type I (Fig. 5m–n) and the eyes are of type a 
(Seapy et al. 2003), with no transverse slit (Fig. 5h and l).

Discussion. The rounded spire, number whorls, opercular, radula and eye type all 
suggest that A. ariejansseni belongs within the Atlanta inflata group of Richter and Seapy 
(1999). The most morphologically similar species are Atlanta californiensis and A. selva-
gensis. Atlanta californiensis has the same number of whorls in the spire and the same 
overall adult shape as A. ariejansseni, but it does not have any shell ornamentation. Atlanta 
californiensis also has much shallower spire sutures than A. ariejansseni. Atlanta selvagensis 
is a slightly smaller species that does show shell ornamentation of the spire in the form of 
spiral lines that are frequently interrupted and highly variable; however, the ornamenta-
tion of A. ariejansseni can clearly be distinguished from that of A. selvagensis. Molecular 
results presented here also confirm that the two species are closely related, but separated by 
a K2P genetic distance of 0.14. No molecular data is available for A. californiensis.

Previous publications have identified A. ariejansseni as A. gaudichaudi (Howard et 
al. 2011) and A. helicinoidea (Pilkington 1970). However, these two species are also 
morphologically different from A. ariejansseni. Although A. helicinoidea belongs to the 
A. inflata group, the spire has an extra whorl and the ornamentation is much coarser 
than that of A. ariejansseni. Atlanta gaudichaudi is described as having no shell orna-
mentation, although some authors show this species with a single spiral line on the 
spire (Seapy et al. 2003). However, A. gaudichaudi does not have the low projections 
that are found on the spire of A. ariejansseni. DNA barcoding also shows that these two 
species are not closely related, with an average K2P genetic distance of 0.25.

Distribution. All specimens were found between 37°S and 48°S latitude, in a 
narrow circumtropical band located in the Southern Subtropical Convergence Zone. 
Specimens were collected from the epipelagic layer (upper 372 m) using oblique 
plankton tows in the Atlantic and Pacific oceans. For a summary of biogeography and 
sampling information, see Fig. 1 and Table 1.

Etymology. Named after Arie Janssen, Naturalis Biodiversity Center, Nether-
lands, in recognition of his commitment and longstanding contributions to holo-
planktonic gastropod research.

Conclusions

Combined molecular, morphological, and biogeographical information has allowed 
the introduction of a new species of the genus Atlanta that can be easily identified 
by means of its shell ornamentation using light microscopy. Atlanta ariejansseni is 
the only atlantid species that has been found living at high latitudes, restricted to 
a narrow circumpolar region. It is, therefore, an extremely important species in the 
current race to understand the effects of a changing ocean. It can be assumed that 
this species is able to tolerate a variable environment, which suggests that it may 
also be able to adapt to a changing ocean. This resilience and adaptability may be 
demonstrated by the successful rearing of veliger A. ariejansseni through to adults 



Deborah Wall-Palmer et al.  /  ZooKeys 604: 13–30 (2016)28

under laboratory conditions by Pilkinton (1970), which has never since been ac-
complished with other atlantid species.

Large sampling efforts have been made for holoplanktonic gastropods in the 
Southern Ocean; however, A. ariejansseni has never been recognised as an undescribed 
species in these studies. This is undoubtedly due to our incomplete understanding of 
atlantid taxonomy, particularly for the Atlantic Ocean. We hope that this study will 
increase awareness of A. ariejansseni and encourage others to record this circumpolar 
species when observed to build up a more complete biogeography. It is only with more 
biogeographical and ecological data that we will be able to determine the ecology and 
effects of a changing ocean upon this species.
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