14 research outputs found

    Sophrolipids : a yeast-derived glycolipid as greener structure directing agents for self-assembled nanomaterials.

    No full text
    International audienceSophorolipids, fully natural glycolipids, can form in water nanometre-size micelles of various geometries depending on their concentration as shown by small angle neutron scattering experiments. This property allows use of them, for the first time, as structure directing agents in the synthesis of nanostructured silica thin films via the evaporation induced self-assembly (EISA) process

    A peptide of a type I toxin−antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids

    No full text
    Publisher: National Academy of Sciences Section: Biological SciencesToxin−antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins’ biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin−antitoxin system (AapA1−IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori. We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5′-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment

    Structural basis of the signalling through a bacterial membrane receptor HasR deciphered by an integrative approach

    No full text
    Bacteria use diverse signalling pathways to adapt gene expression to external stimuli. In Gram-negative bacteria, the binding of scarce nutrients to membrane transporters triggers a signalling process that up-regulates the expression of genes of various functions, from uptake of nutrient to production of virulence factors. Although proteins involved in this process have been identified, signal transduction through this family of transporters is not well understood. In the present study, using an integrative approach (EM, SAXS, X-ray crystallography and NMR), we have studied the structure of the haem transporter HasR captured in two stages of the signalling process, i.e. before and after the arrival of signalling activators (haem and its carrier protein). We show for the first time that the HasR domain responsible for signal transfer: (i) is highly flexible in two stages of signalling; (ii) extends into the periplasm at approximately 70–90 Å (1 Å=0.1 nm) from the HasR β-barrel; and (iii) exhibits local conformational changes in response to the arrival of signalling activators. These features would favour the signal transfer from HasR to its cytoplasmic membrane partners

    Structure-function dissection of the Pseudorabies virus glycoprotein B fusion loops

    No full text
    International audienceConserved across the Herpesviridae family, glycoprotein B (gB) is responsible for driving fusion of the viral envelope with the host cell membrane for entry upon receptor binding and activation by the viral gH/gL complex. Although crystal structures of the gB ectodomain of several herpesviruses have been reported, the membrane fusion mechanism has remained elusive. Here, we report the X-ray structure of the Pseudorabies virus (PrV) gB ectodomain, revealing a typical class III post-fusion trimer that binds membranes via its fusion loops (FLs) in a cholesterol-dependent manner. Mutagenesis of FL residues allowed us to dissect those interacting with distinct sub-regions of the lipid bilayer and their role for membrane interactions. We tested 15 gB variants for their ability to bind to liposomes, and further investigated a subset of them in functional assays. We found that PrV gB FL residues Trp187, Tyr192, Phe275 and Tyr276, which were essential for liposome binding and for fusion in a cellular and viral context, form a continuous hydrophobic patch at the gB trimer surface. Together with reported results from other alpha-herpesvirus gBs, our data suggest a model in which Phe275 from the tip of FL2 protrudes deeper into the hydrocarbon core of the lipid bilayer, while the side chains of Trp187, Tyr192 and Tyr276 form a rim that inserts into the more superficial, interfacial region of the membrane to catalyze the fusion process. Comparative analysis with gB from beta- and gamma-herpesviruses suggest that this membrane-interaction mode is valid for gB from all herpesviruses.IMPORTANCE Herpesviruses are common human and animal pathogens, which infect cells by entering via fusion of viral and cellular membranes and which cause life-long and incurable infections. Central to the membrane fusion event for entry is glycoprotein B (gB), which is the most conserved envelope protein across the herpesvirus family. Like other viral fusion proteins, gB anchors itself into the target membrane via two polypeptide segments called fusion loops (FL). The molecular details of how gB FLs insert into the lipid bilayer have not been described. We provide here structural and functional data regarding key FL residues of gB from Pseudorabies virus, a porcine herpesvirus of veterinary concern, which allows us to propose, for the first time, a molecular model to understand how the initial interactions by gB from all herpesviruses with target membranes are established

    Simple and elegant design of a virion egress structure in Archaea

    No full text
    Some viruses of Archaea use an unusual egress mechanism that involves the formation of virus-associated pyramids (VAPs) on the host cell surface. At the end of the infection cycle, these structures open outward and create apertures through which mature virions escape from the cell. Here we describe in detail the structure and composition of VAPs formed by the Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in cells of its hyperthermophilic archaeal host. We show that the VAPs are stable and autonomous assemblies that can be isolated from membranes of infected cells and purified without affecting their structure. The purified VAPs are heterogeneous in size, reflecting the dynamics of VAP development in a population of infected cells; however, they have a uniform geometry, consisting of seven isosceles triangular faces forming a baseless pyramid. Biochemical and immunoelectron microscopy analyses revealed that the 10-kDa P98 protein encoded by the SIRV2 virus is the sole component of the VAPs. The VAPs were produced in Sulfolobus acidocaldarius and Escherichia coli by heterologous expression of the SIRV2-P98 gene. The results confirm that P98 is the only constituent of the VAPs and demonstrate that no other viral protein is involved in the assembly of pyramids. P98 was able to produce stable structures under conditions ranging from moderate to extremely high temperatures (80 °C) and from neutral to extremely acidic pH (pH 2), demonstrating another remarkable property of this exceptional viral protein

    A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion

    No full text
    The Rift Valley fever virus (RVFV) is transmitted by infected mosquitoes, causing severe disease in humans and livestock across Africa. We determined the x-ray structure of the RVFV class II fusion protein Gc in its postfusion form and in complex with a glycerophospholipid (GPL) bound in a conserved cavity next to the fusion loop. Site-directed mutagenesis and molecular dynamics simulations further revealed a built-in motif allowing en bloc insertion of the fusion loop into membranes, making few nonpolar side-chain interactions with the aliphatic moiety and multiple polar interactions with lipid head groups upon membrane restructuring. The GPL head-group recognition pocket is conserved in the fusion proteins of other arthropod-borne viruses, such as Zika and chikungunya viruses, which have recently caused major epidemics worldwide

    Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens.

    Get PDF
    Yeasts are largely used as bioreactors for vaccine production. Usually, antigens are produced in yeast then purified and mixed with adjuvants before immunization. However, the purification costs and the safety concerns recently raised by the use of new adjuvants argue for alternative strategies. To this end, the use of whole yeast as both production and delivery system appears attractive. Here, we evaluated Pichia pastoris yeast as an alternative vaccine production and delivery system for the circumsporozoite protein (CS) of Plasmodium, the etiologic agent of malaria. The CS protein from Plasmodium berghei (Pb) was selected given the availability of the stringent C57Bl/6 mouse model of infection by Pb sporozoites, allowing the evaluation of vaccine efficacy in vivo. PbCS was multimerized by fusion to the measles virus (MV) nucleoprotein (N) known to auto-assemble in yeast in large-size ribonucleoprotein rods (RNPs). Expressed in P. pastoris, the N-PbCS protein generated highly multimeric and heterogenic RNPs bearing PbCS on their surface. Electron microscopy and immunofluorescence analyses revealed the shape of these RNPs and their localization in peripheral cytoplasmic inclusions. Subcutaneous immunization of C57Bl/6 mice with heat-inactivated whole P. pastoris expressing N-PbCS RNPs provided significant reduction of parasitemia after intradermal challenge with a high dose of parasites. Thus, in the absence of accessory adjuvants, a very low amount of PbCS expressed in whole yeast significantly decreased clinical damages associated with Pb infection in a highly stringent challenge model, providing a proof of concept of the intrinsic adjuvancy of this vaccine strategy. In addition to PbCS multimerization, the N protein contributed by itself to parasitemia delay and long-term mice survival. In the future, mixtures of whole recombinant yeasts expressing relevant Plasmodium antigens would provide a multivalent formulation applicable for antigen combination screening and possibly for large-scale production, distribution and delivery of a malaria vaccine in developing countries
    corecore