361 research outputs found

    "Targeted disruption of the epithelial-barrier by Helicobacter pylori"

    Get PDF
    Helicobacter pylori colonizes the human gastric epithelium and induces chronic gastritis, which can lead to gastric cancer. Through cell-cell contacts the gastric epithelium forms a barrier to protect underlying tissue from pathogenic bacteria; however, H. pylori have evolved numerous strategies to perturb the integrity of the gastric barrier. In this review, we summarize recent research into the mechanisms through which H. pylori disrupts intercellular junctions and disrupts the gastric epithelial barrier

    Functional plasticity in the type IV secretion system of Helicobacter pylori.

    Get PDF
    Helicobacter pylori causes clinical disease primarily in those individuals infected with a strain that carries the cytotoxin associated gene pathogenicity island (cagPAI). The cagPAI encodes a type IV secretion system (T4SS) that injects the CagA oncoprotein into epithelial cells and is required for induction of the pro-inflammatory cytokine, interleukin-8 (IL-8). CagY is an essential component of the H. pylori T4SS that has an unusual sequence structure, in which an extraordinary number of direct DNA repeats is predicted to cause rearrangements that invariably yield in-frame insertions or deletions. Here we demonstrate in murine and non-human primate models that immune-driven host selection of rearrangements in CagY is sufficient to cause gain or loss of function in the H. pylori T4SS. We propose that CagY functions as a sort of molecular switch or perhaps a rheostat that alters the function of the T4SS and "tunes" the host inflammatory response so as to maximize persistent infection

    CD44 Plays a Functional Role in Helicobacter pylori-induced Epithelial Cell Proliferation

    Get PDF
    The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (Ī”CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with Ī”CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylori, that was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the wellestablished Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pyloriinduced epithelial cell proliferation

    ETHNOVETERINARY APPLICATION OF MORINDA CITRIFOLIA FRUIT PUREE ON A COMMERCIAL HEIFER REARING FACILITY WITH ENDEMIC SALMONELLOSIS

    Get PDF
    Abstract We have previously reported that Morinda citrifolia (noni) puree modulates neonatal calves developmental maturation of the innate and adaptive immune system. In this study, the effect of noni puree on respiratory and gastrointestinal (GI), health in preweaned dairy calves on a farm with endemic salmonellosis was examined. Two clinical trials were conducted whereby each trial evaluated one processing technique of noni puree. Trials 1 and 2 tested noni versions A and B, respectively. Puree analysis and trial methods were identical to each other, with the calf as the experimental unit. Calves were designated to 1 of 3 treatment groups in each trial and received either: 0, 15 or 30 mL every 12 hr of noni supplement for the first 3 weeks of life. Health scores, weaning age, weight gain from admission to weaning, and weaned by 6 weeks, were used as clinical endpoints for statistical analysis. In trial 1, calves supplemented with 15 mL noni puree of version A every 12 hr had a higher probability of being weaned by 6 weeks of age than control calves (P = 0.04). In trial 2, calves receiving 30 mL of version B every 12 hr had a 54.5% reduction in total medical treatments by 42 days of age when compared to controls (P = 0.02). There was a trend in reduced respiratory (61%), and GI (52%) medical treatments per calf when compared to controls (P = 0.06 and 0.08, respectively). There were no differences in weight gain or mortality for any treatment group in either trial

    Genome sequence analysis of Helicobacter pylori strains associated with gastric ulceration and gastric cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Persistent colonization of the human stomach by <it>Helicobacter pylori </it>is associated with asymptomatic gastric inflammation (gastritis) and an increased risk of duodenal ulceration, gastric ulceration, and non-cardia gastric cancer. In previous studies, the genome sequences of <it>H. pylori </it>strains from patients with gastritis or duodenal ulcer disease have been analyzed. In this study, we analyzed the genome sequences of an <it>H. pylori </it>strain (98-10) isolated from a patient with gastric cancer and an <it>H. pylori </it>strain (B128) isolated from a patient with gastric ulcer disease.</p> <p>Results</p> <p>Based on multilocus sequence typing, strain 98-10 was most closely related to <it>H. pylori </it>strains of East Asian origin and strain B128 was most closely related to strains of European origin. Strain 98-10 contained multiple features characteristic of East Asian strains, including a type s1c <it>vacA </it>allele and a <it>cagA </it>allele encoding an EPIYA-D tyrosine phosphorylation motif. A core genome of 1237 genes was present in all five strains for which genome sequences were available. Among the 1237 core genes, a subset of alleles was highly divergent in the East Asian strain 98-10, encoding proteins that exhibited <90% amino acid sequence identity compared to corresponding proteins in the other four strains. Unique strain-specific genes were identified in each of the newly sequenced strains, and a set of strain-specific genes was shared among <it>H. pylori </it>strains associated with gastric cancer or premalignant gastric lesions.</p> <p>Conclusion</p> <p>These data provide insight into the diversity that exists among <it>H. pylori </it>strains from diverse clinical and geographic origins. Highly divergent alleles and strain-specific genes identified in this study may represent useful biomarkers for analyzing geographic partitioning of <it>H. pylori </it>and for identifying strains capable of inducing malignant or premalignant gastric lesions.</p
    • ā€¦
    corecore