130 research outputs found
Small Lunar Rovers
Presentation that describes some of the design challenges for small lunar rovers
Planetary Lake Lander - A Robotic Sentinel to Monitor a Remote Lake
The Planetary Lake Lander Project is studying the impact of rapid deglaciation at a high altitude alpine lake in the Andes, where disrupted environmental, physical, chemical, and biological cycles result in newly emerging natural patterns. The solar powered Lake Lander robot is designed to monitor the lake system and characterize both baseline characteristics and impacts of disturbance events such as storms and landslides. Lake Lander must use an onboard adaptive science-on-the-fly approach to return relevant data about these events to mission control without exceeding limited energy and bandwidth resources. Lake Lander carries weather sensors, cameras and a sonde that is winched up and down the water column to monitor temperature, dissolved oxygen, turbidity and other water quality parameters. Data from Lake Lander is returned via satellite and distributed to an international team of scientists via web-based ground data systems. Here, we describe the Lake Lander Project scientific goals, hardware design, ground data systems, and preliminary data from 2011. The adaptive science-on-the-fly system will be described in future papers
Autonomy Software Architecture for LORAX (Life On ice Robotic Antarctic eXplorer)
LORAX is a robotic astrobiological study of the ice field surrounding the Carapace Nunatak near the Allan Hills in Antarctica. The study culminates in a l00km traverse, sampling the ice at various depths (from surface to 10cm) at over 100 sites to survey microbial ecology and to record environmental parameters. The autonomy requirements from LORAX are shared by many robotic exploration tasks. Consequently, the LORAX autonomy architecture is a general architecture for on-board planning and execution in environments where science return is to be maximized against resource limitations and other constraints
Feasibility and Definition of a Lunar Polar Volatiles Prospecting Mission
The recent Lunar Crater Observing and Sensing Satellite (LCROSS) mission has provided evidence for significant amounts of cold trapped volatiles in Cabeus crater near the Moon's south pole. Moreover, LRO/Diviner measurements of extremely cold lunar polar surface temperatures imply that volatiles can be stable outside or areas of strict permanent shadows. These discoveries suggest that orbital neutron spectrometer data point to extensive deposits at both lunar poles. The physical state, composition and distribution of these volatiles are key scientific issues that relate to source and emplacement mechanisms. These issues are also important for enabling lunar in situ resource utilization (ISRU). An assessment of the feasibility of cold-trapped volatile ISRU requires a priori information regarding the location, form, quantity, and potential for extraction of available resources. A robotic mission to a mostly shadowed but briefly .unlit location with suitable environmental conditions (e.g. short periods of oblique sunlight and subsurface cryogenic temperatures which permit volatile trapping) can help answer these scientific and exploration questions. Key parameters must be defined in order to identify suitable landing sites, plan surface operations, and achieve mission success. To address this need, we have conducted an initial study for a lunar polar volatile prospecting mission, assuming the use of a solar-powered robotic lander and rover. Here we present the mission concept, goals and objectives, and landing site selection analysis for a short-duration, landed, solar-powered mission to a potential hydrogen volatile-rich site
Inspection with Robotic Microscopic Imaging
Future Mars rover missions will require more advanced onboard autonomy for increased scientific productivity and reduced mission operations cost. One such form of autonomy can be achieved by targeting precise science measurements to be made in a single command uplink cycle. In this paper we present an overview of our solution to the subproblems of navigating a rover into place for microscopic imaging, mapping an instrument target point selected by an operator using far away science camera images to close up hazard camera images, verifying the safety of placing a contact instrument on a sample or finding nearby safe points, and analyzing the data that comes back from the rover. The system developed includes portions used in the Multiple Target Single Cycle Instrument Placement demonstration at NASA Ames in October 2004, and portions of the MI Toolkit delivered to the Athena Microscopic Imager Instrument Team for the MER mission still operating on Mars today. Some of the component technologies are also under consideration for MSL mission infusion
Tissue tropism and transmission ecology predict virulence of human RNA viruses
Novel infectious diseases continue to emerge within human populations. Predictive studies have begun to identify pathogen traits associated with emergence. However, emerging pathogens vary widely in virulence, a key determinant of their ultimate risk to public health. Here, we use structured literature searches to review the virulence of each of the 214 known human-infective RNA virus species. We then use a machine learning framework to determine whether viral virulence can be predicted by ecological traits, including human-to-human transmissibility, transmission routes, tissue tropisms, and host range. Using severity of clinical disease as a measurement of virulence, we identified potential risk factors using predictive classification tree and random forest ensemble models. The random forest approach predicted literature-assigned disease severity of test data with mean accuracy of 89.4% compared to a null accuracy of 74.2%. In addition to viral taxonomy, the ability to cause systemic infection was the strongest predictor of severe disease. Further notable predictors of severe disease included having neural and/or renal tropism, direct contact or respiratory transmission, and limited (0 < R0 ≤ 1) human-to-human transmissibility. We present a novel, to our knowledge, comparative perspective on the virulence of all currently known human RNA virus species. The risk factors identified may provide novel perspectives in understanding the evolution of virulence and elucidating molecular virulence mechanisms. These risk factors could also improve planning and preparedness in public health strategies as part of a predictive framework for novel human infections
Partner Bereavement and Risk of Herpes Zoster: Results from Two Population-Based Case-Control Studies in Denmark and the United Kingdom.
Background: Psychological stress is commonly thought to increase the risk of herpes zoster by causing immunosuppression. However, epidemiological studies on the topic are sparse and inconsistent. We conducted 2 parallel case-control studies of the association between partner bereavement and risk of zoster using electronic healthcare data covering the entire Danish population and general practices in the UK Clinical Practice Research Datalink. Methods: We included patients with a zoster diagnosis from the primary care or hospital-based setting in 1997-2013 in Denmark (n = 190671) and 2000-2013 in the United Kingdom (n = 150207). We matched up to 4 controls to each case patient by age, sex, and general practice (United Kingdom only) using risk-set sampling. The date of diagnosis was the index date for case patients and their controls. We computed adjusted odds ratios with 99% confidence intervals for previous bereavement among case patients versus controls using conditional logistic regression with results from the 2 settings pooled using random-effects meta-analysis. Results: Overall, the adjusted odds ratios for the association between partner bereavement and zoster were 1.05 (99% confidence interval, 1.03-1.07) in Denmark and 1.01 (.98-1.05) in the United Kingdom. The pooled estimates were 0.72, 0.90, 1.10, 1.08, 1.02, 1.04, and 1.03 for bereavement within 0-7, 8-14, 15-30, 31-90, 91-365, 366-1095, and >1095 days before the index date, respectively. Conclusions: We found no consistent evidence of an increased risk of zoster after partner death. Initial fluctuations in estimates may be explained by delayed healthcare contact due to the loss
Recommended from our members
The FunFOLD2 server for the prediction of protein-ligand interactions
The FunFOLD2 server is a new independent server that integrates our novel protein–ligand binding site and quality assessment protocols for the prediction of protein function (FN) from sequence via structure. Our guiding principles were, first, to provide a simple unified resource to make our function prediction software easily accessible to all via a simple web interface and, second, to produce integrated output for predictions that can be easily interpreted. The server provides a clean web interface so that results can be viewed on a single page and interpreted by non-experts at a glance. The output for the prediction is an image of the top predicted tertiary structure annotated to indicate putative ligand-binding site residues. The results page also includes a list of the most likely binding site residues and the types of predicted ligands and their frequencies in similar structures. The protein–ligand interactions can also be interactively visualized in 3D using the Jmol plug-in. The raw machine readable data are provided for developers, which comply with the Critical Assessment of Techniques for Protein Structure Prediction data standards for FN predictions. The FunFOLD2 webserver is freely available to all at the following web site: http://www.reading.ac.uk/bioinf/FunFOLD/FunFOLD_form_2_0.html
Tele-Operated Lunar Rover Navigation Using Lidar
Near real-time tele-operated driving on the lunar surface remains constrained by bandwidth and signal latency despite the Moon s relative proximity. As part of our work within NASA s Human-Robotic Systems Project (HRS), we have developed a stand-alone modular LIDAR based safeguarded tele-operation system of hardware, middleware, navigation software and user interface. The system has been installed and tested on two distinct NASA rovers-JSC s Centaur2 lunar rover prototype and ARC s KRex research rover- and tested over several kilometers of tele-operated driving at average sustained speeds of 0.15 - 0.25 m/s around rocks, slopes and simulated lunar craters using a deliberately constrained telemetry link. The navigation system builds onboard terrain and hazard maps, returning highest priority sections to the off-board operator as permitted by bandwidth availability. It also analyzes hazard maps onboard and can stop the vehicle prior to contacting hazards. It is robust to severe pose errors and uses a novel scan alignment algorithm to compensate for attitude and elevation errors
Multi-Target Single Cycle Instrument Placement
This presentation is about the robotic exploration of Mars using multiple targets command cycle, safe instrument placements, safe operation, and K9 Rover which has a 6 wheel steer rocket-bogey chassis (FIDO, MER), 70% MER size, 1.2 GHz Pentium M laptop running Linux OS, Odometry and compass/inclinometer, CLARAty architecture, 5 DOF manipulator w/CHAMP microscopic camera, SciCams, NavCams and HazCams
- …