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ABSTRACT

The FunFOLD2 server is a new independent server
that integrates our novel protein–ligand binding site
and quality assessment protocols for the prediction
of protein function (FN) from sequence via structure.
Our guiding principles were, first, to provide a
simple unified resource to make our function predic-
tion software easily accessible to all via a simple
web interface and, second, to produce integrated
output for predictions that can be easily interpreted.
The server provides a clean web interface so that
results can be viewed on a single page and inter-
preted by non-experts at a glance. The output for
the prediction is an image of the top predicted
tertiary structure annotated to indicate putative
ligand-binding site residues. The results page also
includes a list of the most likely binding site residues
and the types of predicted ligands and their
frequencies in similar structures. The protein–
ligand interactions can also be interactively
visualized in 3D using the Jmol plug-in. The raw
machine readable data are provided for developers,
which comply with the Critical Assessment of
Techniques for Protein Structure Prediction data
standards for FN predictions. The FunFOLD2
webserver is freely available to all at the following
web site: http://www.reading.ac.uk/bioinf/
FunFOLD/FunFOLD_form_2_0.html.

INTRODUCTION

Proteins have an essential cellular role in all living organ-
isms; thus, they are crucial in the maintenance of cellular

and organism homeostasis. The ubiquitous role of
proteins in cellular systems, make the determination of
protein function (FN), ligand binding site residues and
potential binding partners, essential to gain a more in-
depth knowledge of cellular functionality (1–3). The pre-
dicted structure of proteins can aid in the determination
of a proteins cellular function, and hence bioinformatics
tools such as the FunFOLD2 server have been de-
veloped to predict protein-ligand binding via the use of
3D models (1,2).
The FunFOLD2 server integrates our cutting edge

function prediction algorithms, to predict protein–ligand
binding sites from a single sequence via the production of
3D structures using the IntFOLD2-TS protocol (4). The
server is intended for use by both expert and non-expert
users alike. Non-expert users can use the ligand-binding
site predictions as a guide to the likely binding sites and
potential ligands, whereas expert users can look more
closely into the data provided. For submission of a query
sequence, an easy-to-use web interface is available, which
allows the non-expert user to predict a variety of protein
function prediction features, including ligand-binding site
residues for the top predicted binding site, putative binding
site ligands, 3D models of the likely protein–ligand inter-
actions, protein–ligand binding site feature scores (1) used
to predict the overall quality of the prediction [predicted
Matthews Correlation Coefficient (MCC) (5) and Binding-
site Distance Test (BDT) (6) scores] and the probability
that each proposed binding site residue binds to particular
ligand types (ions, organic ligands, peptides and nucleo-
tides). In addition, users have the option of downloading
the 3D structure, which includes the superposed predicted
ligands within the predicted binding site. A comprehen-
sive help page is included for the server, containing
details on the required input and output from the server
and an example results page.
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The original FunFOLD server (2) has been operational
since late January 2011, and the outputs have been exten-
sively used by researchers from within the UK, France
[external groups at Reading (7,8) and Genoscope] and
international groups during the CASP10 prediction
season, which ran from April to August 2012. This
article describes a novel server implementation of the
FunFOLD (2) protocol that now includes improved
model ranking using local binding site residue quality
scores [FunFOLDQA (1)], along with the addition of
new output scores. The FunFOLD2 predictions were in-
dependently validated by the CASP10 assessors using
numerous performance benchmarks. The server is also
being continuously evaluated as part of CAMEO (9)
(Continuous Automated Model EvaluatiOn), in the
ligand binding prediction category (http://www.cameo3d.
org). Although other freely available servers exist for the
prediction of function and ligand-binding site residues
(10–17), to our knowledge, the FunFOLD2 server is the
first server to directly integrate a ligand-binding site
quality assessment method for use in protein function
prediction.

IMPLEMENTATION

Figure 1 shows the implementation of the FunFOLD2
server, which emphasizes the interdependency between
the FunFOLD (2) and the FunFOLDQA (1) algorithms.
The first key step is the generation of IntFOLD2-TS
models (4), ranked according ModFOLDclust2 (18)
global model quality scores. The ranked models and a
list of non-redundant parent templates are subsequently
processed by the FunFOLD algorithm. For each model,
the FunFOLD algorithm produces a list of residues from
the target sequences that are most likely to bind a ligand
[in Critical Assessment of Techniques for Protein
Structure Prediction (CASP) FN format], along with a
list of putative binding ligands. The FunFOLD results
for each model, along with the model used and parent
template list, are then fed into the FunFOLDQA algo-
rithm, which assesses both global and per-residue ligand-
binding site prediction quality. The FunFOLDQA
algorithm outputs the predicted BDT (6) and predicted
MCC (5) scores (and the component feature scores from
the neural network inputs). In addition, the propensity
that each predicted ligand-binding site residue is in
contact with the four different ligand types is assessed
[Ions (I), Organic ligands (O), Nucleotides (N) or
Peptides (P)], as specified in the CAMEO (9) Ligand
Binding (LB) category. Finally, predicted MCC and
BDT scores are used to rank the FunFOLD predictions,
outputting the top-ranked prediction as the best predic-
tion to the web server. The use of FunFOLDQA to rank
FunFOLD predictions, on the top 10 models, has been
shown to result in significantly improved predictions [see
Roche et al. (1)]. A brief overview of both the FunFOLD
and FunFOLDQA algorithms are described later in the
text. The new global and per-residue functional propensity
metrics are described in the supplementary methods.

FunFOLD

The FunFOLD method (2) is based on one key concept:
proteins containing ligands within the PDB, with a similar
fold as the 3D model of the target protein being studied,
are likely to having similar binding sites (2). A ligand is
defined as a biologically relevant molecule, which binds to
a structurally elucidated enzyme in the PDB. The
FunFOLD algorithm uses the TM-align (19) method to
superpose templates containing biologically relevant
ligands with the predicted 3D structure from IntFOLD2-
TS. Each model-to-template superposition is subsequently
used if the TM-score� 0.4 [TM-scores from 0.4 to 0.6
have previously been shown to mark the transition
from unrelated to significantly related folds (20)].
The superpositions are then combined and reoriented
using a PyMOL script (http://www.pymol.org), to deter-
mine putative ligand clusters. An agglomerative
hierarchical clustering algorithm is subsequently used
to identify each continuous mass of contacting ligands,
thus suggesting potential ligand binding pockets.
The criteria for determining contacts between ligands are
defined as less than or equal to the Van der Walls radius of
an atom plus 0.5 Å. The cluster with the largest number of
ligands is then selected as the location of the ligand-
binding site pocket. To determine the ligand binding site
residues in the selected binding pocket, a novel ‘residue
voting’ algorithm is used. Residues are determined to be
in contact with the ligand cluster, if the residue has at least
one contact with �2 ligands and at least 25% of the
ligands within the cluster. The criterion for determining
if a residue is in contact with a ligand is a distance of less
than or equal to the Van der Walls radius of an atom plus
0.5 Å. The output from the FunFOLD algorithm is a list
of putative ligand-binding site residues plus a list of the
ligands within the binding site cluster (2).

The FunFOLD algorithm has been extensively bench-
marked on both the CASP8 and the CASP9 data sets (2).
An early implementation of the algorithm was used in the
CASP9 competition (2010), where it ranked amongst the
top 10 methods (21). For a more in-depth description
of the FunFOLD algorithm and methods benchmarking,
see Roche et al. (2). Furthermore, the FunFOLD algo-
rithm has recently been used in two large-scale genomic
studies (7,22).

FunFOLDQA

The FunFOLDQA algorithm (1) was developed to help
determine the reliability of our FunFOLD predictions (2)
by the assignment of quality assessment scores. The final
binding site quality scores that the method produces are
based on the MCC (5) and BDT (6) metrics, which are
used for the assessment of ligand-binding site residue
predictions compared with crystal structures. The
FunFOLDQA method combines four binding site-
dependent protein feature scores and one structural de-
pendent feature score, using a neural network, trained
on either the MCC or BDT metrics, to produce
local ligand-binding site quality predictions. The five
feature scores are called: ‘BDTalign, Identity, Rescaled
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BLOSUM62, Equivalent Residue Ligand Distance and
Model Quality’. The ‘BDTalign score’ establishes the
distance between residues that are equivalent between
the model binding site and each template binding site.
The Identity score compares binding site residues
between the model- and template-binding site, which are
‘equivalent’ in 3D space, according to their amino acid
sequence. The ‘Rescaled BLOSUM62’ score is similar to
the ‘Identity’ score, but it scores equivalent residues
between model and template binding site, using the
BLOSUM62 scoring matrix. The ‘Equivalent Residue
Ligand Distance score’ scores the equivalent residues
between the model and the template in relation to their
distance from the bound ligand. The ‘Model Quality
Score’ is the global quality score for the starting model,
calculated using ModFOLDclust2 (18). For a detailed
description of the scoring metrics and their associated
algorithms, see Roche et al. (1).

In addition to combining the strengths of the
FunFOLD and FunFOLDQA algorithms, the
FunFOLD2 server also integrates a new metric for both
the global and per-residue scoring of functional propensity
(See Supplementary Methods). The function is determined
as the propensity of binding to specific ligands: Ions (I),
Organic ligands (O), Nucleotides (N) or Peptides (P),
in accordance with CAMEO LB category requirements.
All quality scores are between zero and one, with scores
close to one signifying a high confidence prediction
and scores close to zero signifying a low confidence
prediction.

INPUTS AND OUTPUTS

The FunFOLD2 server provides an easy to use web inter-
face for submission of jobs: the only input required is a
protein sequence in single letter amino acid code.
However, optionally users may provide a name for the
protein sequence and an email address. On submission
of the sequence to the server, a unique URL is
generated for the output, which can be bookmarked.
Additionally, if a user has provided an email address, an
email will be sent containing a reminder of the results
URL, once the job has been completed. The time for job
completion is in line with similar ligand-binding site pre-
diction servers, which can take >24 h to return results,
although typically users should expect to receive their
results within the same day. Several factors influence
server response time including, the server load, the size
of the protein sequence under analysis and the number
of templates available.
The server results page contains a graphical representa-

tion of the ligand-binding site, with predicted ligands and
binding site residues highlighted (Figure 2), which have
been rendered using PyMOL (http://www.pymol.org).
Additionally, a list of ligand-binding site residues, pre-
dicted ligands and binding site residue propensities is
provided in CAMEO format. Furthermore, an interactive
model with predicted binding site residues and ligands can
be visualized using the Jmol plug-in (http://jmol.
sourceforge.net/). A link to download a PDB file of the
top model with the putative ligands is also provided. If the
user provides an email address on submission of their

Figure 1. Flow diagram of the FunFOLD2 prediction server pipeline. (A) A number of alternative models are built for the target sequence using
the IntFOLD2-TS protocol (4). (B) The FunFOLD2 pipeline then uses ModFOLDclust2 (18) to determine the top models for each target. (C) The
FunFOLD algorithm (2) is subsequently used to predict ligand-binding site residues for the top models. (D) The quality is assessed for the resultant
FunFOLD predictions, using our ligand-binding site quality assessment tool, FunFOLDQA (1). (E) The predicted MCC and BDT scores [according
to FunFOLDQA (1)] are provided, along with the propensity of which ligand type the binding site is most likely to contain, along with ligand
functional propensity. (F) Final prediction.

Nucleic Acids Research, 2013, Vol. 41, Web Server issue W305

 at U
niversity of R

eading on D
ecem

ber 2, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt498/-/DC1
http://www.pymol.org
http://jmol.sourceforge.net/
http://jmol.sourceforge.net/
http://nar.oxfordjournals.org/


sequence, then machine-readable text files are attached to
the results email in CASP-FN format and CAMEO-LB
format.

CASE STUDY—AMINOPEPTIDASE N FAMILY
PROTEIN (PDB ID 4fgm AND CASP10 T0726)

The aminopeptidase N family protein Q5QTY1 from
Idiomarina loihiensis (PDBID 4fgm and CASP10 target
T0726) provides an example of output from the
FunFOLD2 server (Figure 2), where using
FunFOLDQA to rank predictions results in improved
prediction quality. Figure 2 highlights the predicted
binding site residues in green (B and C), over-predictions
are shown in red and observed residues in blue (A). The
ligands predicted (B and C) and observed (A) are shown in
white. The top FunFOLD2 prediction correctly predicts
the binding site residues (273, 277 and 307), with a pre-
dicted MCC score of 0.882 and predicted BDT score of
0.801 and per residue scores (r=histidine (HIS); n=277;
j I=0.212; O=000; N=000; P=000, r=glutamic acid
(GLU); n=307; j I=0.335; O=000; N=000; P=000,
r=HIS; n=273; j I=0.189; O=000; N=000;
P=000). The top ranked prediction for the original
FunFOLD method produces an over-prediction of one
binding site residue (310), with a lower predicted MCC
score of 0.872 and a predicted BDT score of 0.777 and
pre-residue scores (r=HIS; n=277; j I=0.217;
O=000; N=000; P=000, r=GLU; n=307; j I=
0.328; O=000; N=000; P=000, r=HIS; n=273; j
I=0.192; O=000; N=000; P=000, r= threonine
(THR); n=310; j I=0.246; O=000; N=000;
P=000). Furthermore, additional case studies can be
found in the original benchmarking papers (1,2) and in
two recently completed genomic-scale studies (7,22).

LIMITATIONS

Predicting ligand-binding site data is a difficult task, and
there are several limitations to current prediction methods.

The following is a list of the most common limitations
specific to the current implementation of the
FunFOLD2 server: (i) If the server is unable to build a
starting model for the target sequence, then it cannot
predict any ligand-binding sites, although, fortunately,
for the majority of protein targets, a reasonable 3D
model can be obtained. (ii) If no structural similarity
can be found, between the target model and structurally
elucidated proteins with bound biologically relevant
ligands, then a prediction is not made. (iii) Only one
ligand-binding site is predicted per target sequence—the
site with the largest identified ligand cluster. However, the
server does also provide the data showing all putative
ligand clusters, and these clusters can be made visible to
users on the results page using the Jmol plugin. (iv) The
FunFOLD2 server currently outputs predictions based on
the best predicted IntFOLD2-TS model, and the top pre-
dicted model may not always be the best model.

CONCLUSIONS

The FunFOLD2 server provides biologists with an intui-
tive interface for the prediction of protein–ligand inter-
actions from amino acid sequences. Graphical output
and plug-ins are provided to facilitate interactive
visualization of predicted interactions in 3D, and
machine-readable files are provided for developers. The
algorithms within the FunFOLD2 server have been inde-
pendently tested in the recent international CASP10 com-
petition where the method was found to rank amongst the
top few. Additionally, both the FunFOLD (2) and
FunFOLDQA algorithms have been extensively bench-
marked on both the CASP8 and CASP9 data sets (1,2).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Methods.

Figure 2. Integrating both FunFOLD (2) and FunFOLDQA (1) into the FunFOLD2 server improves predictive quality. Example of a binding site
prediction from CASP10 target T0726 comparing the FunFOLD2 server with the original FunFOLD method. The green sticks represent residues in
the model that have been correctly predicted as binding to the ligands. The red sticks represent residues that were incorrectly predicted as potential
ligand-binding residues. The blue sticks represent the observed ligand-binding site residues in the experimental structure. The white spheres represent
ligands either predicted (B and C) or observed (A). (A) An example of the observed CASP10 target T0726 (4fgm), with the observed binding site
residues (273, 277 and 307) and ligand (ZN) shown. (B) The predicted binding site from the original FunFOLD method for T0726 with the predicted
binding site residues (273, 277, 307 and 310) and ligands (ZN-8) shown, with a predicted MCC score of 0.872 and a predicted BDT score of 0.777.
(C) An example where FunFOLD2 produces a perfect prediction for CASP10 target T0726 (4fgm), with the predicted binding site residues (273, 277
and 307) and ligands (ZN-8) shown. In this case, the predicted MCC score is 0.882, and the predicted BDT score is 0.801.
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