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Abstract

Novel infectious diseases continue to emerge within human populations. Predictive studies

have begun to identify pathogen traits associated with emergence. However, emerging

pathogens vary widely in virulence, a key determinant of their ultimate risk to public health.

Here, we use structured literature searches to review the virulence of each of the 214 known

human-infective RNA virus species. We then use a machine learning framework to deter-

mine whether viral virulence can be predicted by ecological traits, including human-to-

human transmissibility, transmission routes, tissue tropisms, and host range. Using severity

of clinical disease as a measurement of virulence, we identified potential risk factors using

predictive classification tree and random forest ensemble models. The random forest

approach predicted literature-assigned disease severity of test data with mean accuracy of

89.4% compared to a null accuracy of 74.2%. In addition to viral taxonomy, the ability to

cause systemic infection was the strongest predictor of severe disease. Further notable pre-

dictors of severe disease included having neural and/or renal tropism, direct contact or

respiratory transmission, and limited (0 < R0� 1) human-to-human transmissibility. We

present a novel, to our knowledge, comparative perspective on the virulence of all currently

known human RNA virus species. The risk factors identified may provide novel perspectives

in understanding the evolution of virulence and elucidating molecular virulence mecha-

nisms. These risk factors could also improve planning and preparedness in public health

strategies as part of a predictive framework for novel human infections.

Introduction

The emergence of novel infectious diseases continues to represent a threat to global public

health. Emerging pathogens have been defined as those newly recognised infections of humans

following zoonotic transmission or those increasing in incidence and/or geographic range [1].

High-profile examples of emerging pathogens include the discovery of the novel Middle East

respiratory syndrome (MERS) coronavirus from cases of respiratory illness in 2012 [2] and the

expansion of the range of Zika virus across the South Pacific and the Americas [3]. The emer-

gence of previously unseen viruses means that the set of known human viruses continually
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increases by around two species per year [4,5]. Initial comparative studies identified trends

among emerging human pathogens, e.g., increased risk of emergence for pathogens with

broad host ranges and RNA viruses [6–9]. However, more recent comparative analyses have

focused on risk factors for specific pathogen traits such as transmissibility [10–12]. Here, we

focus on understanding the ecological determinants of pathogen virulence, using all currently

recognised human RNA viruses as a study system.

Emerging RNA viruses vary widely in their virulence, with some never having been associ-

ated with human disease at all. For example, Zaire ebolavirus causes severe haemorrhagic fever

with outbreaks, including the 2014 West African outbreak, showing case fatality ratios (CFRs)

of approximately 60% or more [13,14]. In contrast, human infections with Reston ebolavirus

have never exhibited any evidence of disease symptoms [15]. Applying the comparative

approach to understand the ecology of virulence could offer valuable synergy with studies of

emergence towards prioritisation and preparedness in the detection of potential new human

viruses [16].

Few comparative analyses have addressed the risk factors driving human pathogen viru-

lence to date (but see [17–19]), and none have investigated virulence across the entire breadth

of currently recognised human RNA viruses. Of relevance here is an ongoing, largely theoreti-

cal debate about the possibility of an evolutionary tradeoff between virulence and transmissi-

bility, which has proven challenging to empirically characterise [20–22]. We also note that in

the absence of coevolution, a zoonotic virus may demonstrate ‘coincidental’, nonadapted viru-

lence [23,24]. We therefore compared viruses with different levels of transmissibility in human

populations. Transmission route is another potential predictor of virulence; higher mortality

rates have been observed in earlier comparative analyses for vector-borne pathogens [17] and

pathogens with greater environmental persistence [18]. We therefore hypothesised vector-

borne transmission or routes with environmental components (e.g., faecal–oral or food-

borne transmission) would be associated with higher virulence than direct, contact-based

transmission.

Several studies have suggested a link between host range breadth and virulence, in which

higher virulence has been predicted for pathogens with a narrower, specialist host range [25].

Virulence (or host exploitation) has also been predicted to vary with host relatedness through

phylogenetic distance [26,27] or in phylogenetic clustering [28]. We therefore hypothesised

that a narrow host range, and specifically, infection of nonhuman primate hosts, may also pre-

dict virulence. Finally, we hypothesised that a broader tissue tropism could predict higher viru-

lence. This idea is largely unexplored, although experimental studies have demonstrated a

broader tissue tropism for more virulent strains of Newcastle disease virus [29].

We aimed to determine patterns of virulence across the breadth of all known human RNA

viruses. We then aimed to use predictive machine learning models to ask whether ecological

traits of viruses can act as predictive risk factors for virulence in humans. Specifically, we

examined hypotheses that viruses would be more highly virulent if they lacked transmissibility

within humans, had vector-borne or faecal–oral transmission routes, had a narrow host range

or infected nonhuman primates, or had greater breadth of tissue tropisms.

Results

Virulence of human RNA viruses

Following [5], as of 2015, there were 214 RNA virus species containing viruses capable of

infecting humans, spanning 55 genera and 21 families (with one species unassigned to a fam-

ily). Using a two-category system, 58 of these were rated as causing ‘severe’ clinical disease and

154 as ‘nonsevere’ following systematic literature review (Fig 1; see also S1 Table). Two viruses
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could not be assigned a disease severity rating and were excluded from all analyses (hepatitis

delta virus, which is reliant on hepatitis B virus coinfection, and primate T-lymphotropic virus

3, which may be associated with chronic disease like other T-lymphotropic viruses but has not

been known in humans long enough for cohort observations). Disease severity differed

between viral taxonomic families (Fisher’s exact, 1,000 simulations, p< 0.001), with Arenaviri-

dae, Filoviridae, and Hantaviridae having the highest fractions of severe-rated virus species

(Fig 1). Although 55 of 172 viruses considered zoonotic were rated ‘severe’, we note that only 3

of 40 nonzoonotic viruses were rated as causing severe disease (hepacivirus C and human

immunodeficiency virus [HIV] 1 and 2). Fatalities were reported in healthy adults for 64

viruses and in vulnerable individuals only for an additional 26 viruses, whilst eight viruses

rated ‘nonsevere’ had severe strains, six of which belonged to the family Picornaviridae.

Classification tree risk factor analysis

To find predictive risk factors for virulence, we first divided the 212 virus species into a single

training (n = 181) and test set (n = 31) partition based on taxonomy and severity to minimise

potential biases from trait imbalances between sets. Using this training set, we then con-

structed a single classification tree that aimed to optimally classify viruses in virulence based

on their ecological traits. The final pruned classification tree included variables relating to

transmissibility, tissue tropism, and taxonomy (Fig 2). Severe disease was predicted by the

model for four generalised groups: i) viruses with a neural or systemic primary tropism with

limited human-to-human transmissibility (excluding orthomyxoviruses, phenuiviruses, and

Fig 1. Virulence of currently known human RNA viruses with respect to taxonomy. Number of known human RNA virus species split by

ICTV taxonomic family. Shading denotes disease severity rating. Supporting data are available via figshare: 10.6084/m9.figshare.7406441.v3

(https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_

Human_RNA_Viruses/7406441/3). ICTV, International Committee on Taxonomy of Viruses.

https://doi.org/10.1371/journal.pbio.3000206.g001
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reoviruses); ii) viruses known to have a renal tropism (primary or otherwise); iii) hantaviruses;

and iv) retroviruses with sustained human-to-human transmissibility.

Random forest risk factor analysis

Although the illustrated classification tree identified several risk factors, this represents one of

many possible trees because tree structure is dependent on the exact sampling partition

between training and test data. We therefore constructed a random forest model containing

5,000 individual trees, each built using a bootstrapped sample of the training data and a ran-

domly restricted subset of predictors, and repeated this approach over 200 alternative training/

test set partitions.

Averaging over these bootstrapped random forests, the most informative predictor vari-

ables for classifying virulence were taxonomic family and primary tissue tropism (Fig 3). How-

ever, primary transmission route, human-to-human transmissibility level, and having a

known neural or renal tropism were also relatively informative, broadly mirroring the risk fac-

tors observed in the single tree. Host range predictors were generally uninformative. To iden-

tify whether virulence risk factors might differ for non-human–adapted viruses, we repeated

our machine learning analysis for only those viruses with known or suspected zoonotic trans-

mission. For zoonotic viruses, the most informative predictors were similar (Fig 3), though

transmission route variables (primary transmission route, having known vector-borne trans-

mission) appeared to increase in relative importance.

To quantify the effects of the most informative risk factors, averaged partial dependence

was extracted from the random forests, describing the marginal predicted probabilities of

severe virulence associated with each virus trait (Fig 4, S2 Table). Averaging across other pre-

dictors, viruses having tissue tropisms within neural or renal systems or systemic across multi-

ple organ systems presented the highest risk of severe virulence, whilst respiratory and

gastrointestinal tropisms presented the lowest risk. An increased probability of severe viru-

lence was also observed for viruses transmitted by direct contact or respiratory routes and

those with known but limited human-to-human transmissibility. When restricted to zoonotic

Fig 2. Final pruned classification tree predicting disease severity for 181 human RNA viruses. Final classification tree structure predicting virulence.

Viruses begin at the top and are classified according to split criteria (white boxes) until reaching terminal nodes with the model’s prediction of disease

severity, and the fraction of viruses following that path correctly classified is shown based on literature-assigned ratings (shaded boxes). ‘Tp: primary’

denotes primary tissue tropism, ‘Tr level’ denotes level of human-to-human transmissibility, and ‘Tp: renal’ denotes having a known renal tissue

tropism. Tp, tropism; Tr, transmissibility.

https://doi.org/10.1371/journal.pbio.3000206.g002

Tropism and transmission ecology predict viral virulence

PLOS Biology | https://doi.org/10.1371/journal.pbio.3000206 November 26, 2019 4 / 18

https://doi.org/10.1371/journal.pbio.3000206.g002
https://doi.org/10.1371/journal.pbio.3000206


viruses, patterns of partial dependence were mostly similar to those observed for all human

viruses (Fig 4).

Model performance in predicting viral virulence

Although the single classification tree model predicted its training set well, it did not appear

generalisable to novel data within its test set. The single tree correctly predicted virulence rat-

ings from literature-based criteria for 24 of 31 viruses in its test set, giving a resulting accuracy

of 77.4% (95% confidence interval [CI]: 58.9%–90.4%), no evident improvement on the null

model assigning all viruses as nonsevere (null accuracy = 74.2%). The random forest approach

gave better predictive performance, correctly predicting virulence with a mean accuracy of

89.4% across all training/test partitions (95% CI: 72.0%–97.0%), significantly greater than the

null accuracy (one-tailed one-sample proportion test, p = 0.041). The random forest approach

also achieved superior performance when considering sensitivity, specificity, true skill statistic,

and the negative predictive value as a performance measure prioritising correct classification

of ‘severe’-rated viruses (Table 1). The random forests also outperformed the classification tree

in area under the receiver operating characteristic curve (AUROC) (Table 1, Fig 5).

Nineteen of 139 viruses featured in test set partitions were misclassified from averaged ran-

dom forest predictions (S1 Table): seven viruses rated as severe from literature protocols that

were predicted to be nonsevere and 12 nonsevere viruses predicted to be severe. Misclassifica-

tions from the random forest occurred most frequently within the flaviviruses and orthohanta-

viruses (S1 Table), though misclassifications did not appear to occur disproportionately

between genera (Fisher’s exact, 1,000 simulations, p = 0.930).

The observed predictor importance and risk factor directions were robust to constructing

random forest models for subsets of viruses, removing those with low-certainty data or data

Fig 3. Variable importance from random forest models. Importance of each variable in predicting virulence in random forest models applied to all

known human RNA viruses and zoonotic viruses only, calculated as the average decrease in Gini impurity following a tree split based on that predictor

and scaled against the most informative predictor within each random forest to give a relative measure. Points denote mean values across 200 random

forest models with alternative training/test partitions. Error bars denote ± 1 standard deviation. Colour key denotes type of predictor variable.

Supporting data are available via figshare: 10.6084/m9.figshare.7406441.v3 (https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_

Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/7406441/3). nh, nonhuman; tr, transmissibility.

https://doi.org/10.1371/journal.pbio.3000206.g003
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from serological evidence only (S1 and S2 Figs), and similar performance diagnostics were

obtained (S3 Table), though transmission route predictors appeared less informative when

considering only viruses with at least 20 known cases. Redefining our virulence measure to

integrate information on known fatalities and differences with subspecies or strains in an

Fig 4. Partial dependence from random forest models in predicting severe virulence. Predicted probability of classifying virulence as ‘severe’ for

each of the most informative risk factors in random forest models applied to all known human RNA viruses and zoonotic viruses only (primary tissue

tropism, any known neural tropism, any known renal tropism, level of human-to-human transmissibility, primary transmission route, and any known

vector-borne transmission). Predicted probabilities are marginal, i.e., averaging over any effects of other predictors. Boxes denote distribution of

probabilities across 200 random forest models with alternative training/test partitions, with heavy lines denoting median probability. Dashed line

denotes raw prevalence of ‘severe’ virulence rating among the respective training datasets. Colour key denotes predictor variable type as in Fig 3, i.e.,

blue = tissue tropism, green = transmissibility, red = transmission route. Supporting data are available via figshare: 10.6084/m9.figshare.7406441.v3

(https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_

RNA_Viruses/7406441/3).

https://doi.org/10.1371/journal.pbio.3000206.g004

Table 1. Predictive performance metrics for classification tree and random forest model. Sensitivity, specificity, NPV (proportion of ‘nonsevere’ predictions that cor-

rectly matched literature rating), TSS (sensitivity + specificity − 1), and AUROC for predictive model methods applied to predict virulence of viruses within the test set.

Random forest diagnostics indicate mean values across 200 training/test partitions. Supporting data are available via figshare: 10.6084/m9.figshare.7406441.v3 (https://

figshare.com/articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/7406441/3).

Model Sensitivity Specificity NPV TSS AUROC

Classification tree 0.625 0.826 0.864 0.451 0.636

Random forest 0.776 0.935 0.924 0.712 0.955

Abbreviations: AUROC, area under the receiver operating characteristic curve; NPV, negative predictive value; TSS, true skill statistic.

https://doi.org/10.1371/journal.pbio.3000206.t001
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ordinal ranking system (S4 Table) did not improve predictive performance (S5 Table). Using

alternative virulence measurements, the most informative variables and virus traits predicting

severity showed good agreement with those of the main analysis (S3 and S4 Figs).

Discussion

We present the first comparative analysis of virulence across all known human RNA virus spe-

cies to our knowledge. We find that disease severity is nonrandomly distributed across virus

families and that beyond taxonomy, severe disease is predicted by risk factors of tissue tropism

and, to a lesser extent, transmission route and level of human-to-human transmissibility. In

both classification tree and random forest models, viruses were more likely to be predicted to

cause severe disease if they caused systemic infections, had neural or renal tropism, transmit-

ted via direct contact or respiratory routes, or had limited capability to transmit between

humans (0< R0� 1). These risk factors were robust to alternative modelling methods, alterna-

tive definitions of virulence, and exclusions of poor-quality data.

Ecology and evolution of risk factor traits

Primary tissue tropism was the most informative nontaxonomic risk factor (Fig 3) and the first

split criteria in the classification tree (Fig 2), with specific neural tropism and generalised

systemic tropism predicting severe disease (Fig 4). Few studies have directly predicted how tis-

sue tropism should influence virulence. The identified risk factor tropisms could be explain-

able as a simple function of pathology occurring in sensitive or multiple tissues, respectively,

Fig 5. Receiver operating characteristic curve for tree-based machine learning models. Plotted models in predicting

virulence in test set(s) for the single classification tree (bold black line) and averaged random forest models (bold red

line) over 200 training/test set partitions. y Axis denotes sensitivity (or true positive rate; proportion of viruses rated

‘severe’ by literature protocol that were correctly predicted as ‘severe’ by the model), and x axis denotes 1 –specificity

(or false positive rate; proportion of viruses rated ‘nonsevere’ by literature protocol that were incorrectly predicted as

‘severe’ by the model). Dashed black line indicates null expectation (i.e., a model with no discriminatory power).

Model profiles further toward the top left indicate a better predictive performance.

https://doi.org/10.1371/journal.pbio.3000206.g005
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increasing intensity of clinical disease. However, it has been suggested that an excessive, nona-

dapted virulence may result if infections occur within nontarget tissues that do not contribute

to transmission [30], although the evolutionary determinants of tissue tropism are not well-

understood [31]. Tissue tropism should be a key consideration for future comparative and evo-

lutionary modelling efforts.

We also found viruses primarily transmitted by direct contact and respiratory routes to

have a higher predicted probability of severe virulence than viruses transmitted by vector-

borne or faecal–oral routes. Contrastingly, previous comparative analyses pooling several

microparasite types, including a limited range of viruses, have shown positive associations

between virulence and vector-borne transmission [17] or environmental survivability [18].

Ewald [17] suggested virulence has fewer costs to pathogen fitness if transmission can occur

independent of host health and mobility, e.g., through arthropod vectors or contaminated

water, though we did not observe support for this hypothesis in our analysis.

The relationship between virulence and transmissibility appears more complex. Firstly, ran-

dom forest models suggested a lower risk of severe virulence for viruses with sustained

human-to-human transmissibility (level 4) than self-limited transmissibility (level 3) (Fig 4).

This appears consistent with hypothesised virulence–transmissibility tradeoffs [21,32,33] and

suggests that the adaptation necessary to develop efficient human-to-human transmissibility

could result in attenuation of virulence in RNA viruses. Sustained transmissibility appeared to

positively predict severe disease for a specific subset of four viruses in the single classification

tree (Fig 2), all retroviruses causing chronic syndromes (HIV 1 and 2 and primate T-lympho-

tropic virus 1 and 2), which are likely subject to different evolutionary dynamics—if disease

occurs after the infectious period, virulence brings fewer costs to pathogens from host mortal-

ity, essentially ‘decoupling’ from transmission [23]. We note only three nonchronic level 4

viruses rated severe: severe acute respiratory syndrome-related coronavirus, yellow fever virus,

and Zaire ebolavirus.

Although cross-species infections incapable of onward transmission (sometimes termed

‘dead-end’ infections) can result in high virulence because without coevolution, viral pheno-

types within the novel host will be nonadapted—i.e., a ‘coincidental’ by-product [23,24]—we

did not observe viruses incapable of human-to-human transmission (level 2) to be compara-

tively more virulent. This may suggest that if virulence is entirely unselected in dead-end

infections, phenotypic levels of virulence could just as easily turn out to be ‘coincidentally’

low.

Taxonomic family being a highly informative predictor in the random forests implies that

there is a broad phylogenetic signal to virulence, but it is also highly likely that the explanatory

power represents a proxy for many other phylogenetically conserved viral traits that are chal-

lenging to implement in comparative analyses of this scale, such as variation at the proteomic,

transcriptomic, or genomic level or further data beyond simple categorisations, e.g., specific

arthropod vector species. Untangling these sources of variation from different scales of traits

will be a critical next step in predictive modelling of viral virulence.

Analytical limitations

We acknowledge several limitations to the quality of our data, as with any broad comparative

analysis. Risk factor data were problematic or missing for certain viruses, e.g., natural trans-

mission route for viruses only known to infect humans by accidental occupational exposure

and tissue tropism for viruses only known from serological evidence. However, the consistency

of findings between alternative, stricter definitions of virulence and data subsets removing

viruses with suspected data quality issues suggests scarcity of data does not bias our analyses.

Tropism and transmission ecology predict viral virulence
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Virulence also exhibits substantial variation at the subspecies level, i.e., between strains or

variants. For example, severity of Lassa virus disease superficially varies with infection route

and geography, though this appears to be driven by variation between genotypes [34]. Confir-

matory analyses at a finer resolution would validate our identified risk factors, e.g., phyloge-

netic trait models of individual genera or species. Furthermore, clinical symptoms are also

subject to traits of the host individual, e.g., immunocompetence, age, and microbiome [35,36].

Our risk factor analysis brings a novel, to our knowledge, top-down perspective on virulence

at the broadest level, though caution must be exerted in extrapolating the risk factors we find

to dynamics of specific infections.

Implications for public health

The value of predictive modelling as an inexpensive and rapid tool for risk assessments during

early emergence is increasingly recognised [16]. Instances in which machine learning model

predictions do not match outcomes could indicate likely candidates for outcome class changes,

e.g., future reservoir hosts for zoonotic disease [37], and we note severe virulence was pre-

dicted for 12 viruses rated ‘nonsevere’ from literature protocols (S1 Table).

However, our models have restricted function in predicting the virulence of a newly identi-

fied virus, particularly if human infections are not yet recognised. Taxonomy may be easily

accessible and applicable to give simple virulence estimates. However, the most informative

nontaxonomic predictors, tissue tropism and transmission route, are not likely to be identified

with confidence before clinical observations of virulence. One way to address this information

gap would be use of available data from animal infections, assuming that tissue tropism and

transmission route do not differ between human and nonhuman hosts. Alternatively, predic-

tor data might be imputed from the nearest-related known virus, particularly for traits that

appear highly phylogenetically conserved such as tissue tropism [31].

A more powerful future approach lies in the potential predictability of tissue tropism based

on cell receptors and, more challengingly, of cell receptors based on viral proteomics or

sequence data [38], an increasingly accessible information source during early emergence fol-

lowing advances in genomic sequencing methods [39]. The exact links between tissue tropism,

cell receptors, and nucleotide sequences are currently a critical knowledge gap and a poten-

tially informative focus for future predictive efforts. A further key area requiring development

is the possibility of inferring virulence directly from aspects of sequence data, e.g., genome

composition biases, which have recently demonstrated the potential to predict reservoir host

taxa and arthropod vectors via machine learning [40].

More widely, our analysis brings a novel, to our knowledge, focus that complements com-

parative models predicting other aspects of the emergence process such as zoonotic transmis-

sion [8,9,37,41], propagation within humans [10,11], or geographic hotspots [42,43]. After

continued calls for model-informed strategy, predictive studies are now beginning to shape

surveillance and prevention with respect to emerging zoonoses [16,44], with virulence being

been suggested as a factor to direct viral surveillance [45], albeit in nonhuman hosts. The viru-

lence risk factors we identify suggest that broadly targeting direct contact or respiratory trans-

mission interfaces within ecological systems and/or tailoring detection assays towards certain

virus families (e.g., Hantaviridae) or tissues (e.g., neural tissue) could contribute to a viable

strategy to detect future virulent zoonoses.

Conclusion

This work adds to the comparative and predictive modelling efforts surrounding emerging

infectious diseases. Here, we contribute a novel, to our knowledge, focus on ecological
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predictors of virulence of human RNA viruses, which can be combined in holistic frameworks

with other models such as those predicting emergence dynamics. As a predictive model, the

featured random forests offer valuable inference into the evolutionary determinants of viru-

lence in newly emerging infections. We propose that future predictive studies and prepared-

ness initiatives with respect to emerging diseases should carefully consider potential for

human virulence.

Materials and methods

Data collection

For each of the 214 recognised human-infective RNA virus species, following standardised

data compilation efforts and critical assessment protocols [5], data on virulence and potential

risk factors were collected via a systematic search and review of clinical and epidemiological

literature. The following were consulted in turn: clinical virology textbooks [46–48]; references

from the data set described by [5]; and literature searches using Google Scholar (search terms:

1) [virus name] AND human, 2) [virus name] AND human AND case, 3) [virus name] AND

human AND [fatal� OR death], 4) [virus name] AND human AND [tropi� or isolat�]).

Searches 3 and 4 were carried out only when fatality or tropism data, respectively, were not

already found from previous sources. Data collection and virus name search terms included

the full species name, any synonyms or subspecies (excluding vaccine strains), and the stan-

dard virus abbreviation as given by ICTV Online Virus Taxonomy [49].

Although many possible measurements of virulence have been proposed [50,51], even sim-

ple metrics like CFR have not been calculated for the majority of human RNA virus species.

Therefore, virulence was rated using a simple two-category measure of severity of typical dis-

ease in humans. We rated viruses as ‘severe’ if they firstly had�5% CFR when data were avail-

able (159/214 viruses, including those with zero CFR); otherwise, we rated viruses as ‘severe’ if

they had frequent reports of hospitalisation, were associated with significant morbidity from

certain conditions (haemorrhagic fever, seizures/coma, cirrhosis, AIDS, hantavirus pulmonary

syndrome, HTLV-associated myelopathy), or were explicitly described as ‘severe’ or ‘causing

severe disease’ (S1 Table). We rated viruses as ‘nonsevere’ if none of these conditions were

met. We note that this led to ‘nonsevere’ ratings for some viruses with clinically severe but rare

syndromes; e.g., dengue virus can cause haemorrhagic dengue fever, though this is much rarer

than typical acute dengue fever [46,47]. To address this, data were also collected on whether

the virus has caused fatalities in vulnerable individuals (defined as age 16 and below or 60 and

above, immunosuppressed, having comorbidities, or otherwise cited as being ‘at-risk’ by

sources for specific viruses) and in healthy adults and whether any ‘nonsevere’ virus has atypi-

cally severe strains (e.g., most infections with viruses within the species Human enterovirus C
cause mild disease; however, poliovirus, which causes severe paralytic disease, is also classified

under this species). These were examined both individually and within a composite six-rank

system (S4 Table).

Data were compiled for four main risk factors: transmission route(s) and tissue tropism(s),

sourced from literature search exercises as described, and extent of human-to-human trans-

missibility and host range, sourced directly from [5]. Although previous studies also predict

virulence to vary with other traits, e.g., environmental survivability [18], paucity of data or

nestedness within taxonomic family prevented their inclusion in our analysis. Firstly, primary

transmission route was categorised as the dominant route the virus is transmitted by: vector-

borne (excluding mechanical transmission), direct contact, faecal–oral, or respiratory trans-

mission. Primary tissue tropism was similarly categorised as the dominant organ system the

virus typically infects or targets, specified as neural, gastrointestinal, hepatic, respiratory,
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circulatory, vascular, or ‘systemic’ (typical infection within multiple organ systems with no

clear, single dominant tropism). However, many human viruses are known from isolation

from blood or serum, with no further evidence of specific tissue tropisms (n = 69). Therefore,

we also included an additional ‘viraemia’ category in the primary tissue tropism predictor to

indicate only blood presence was known.

Secondly, binary variables were also constructed, denoting whether viruses had ever been

observed to utilise a) multiple transmission routes/tissue tropisms and b) each individual

transmission route and tropism, including additional categories that were never among the

primary routes/tropisms (food-borne and vertical transmission; renal, cardiac, joint, repro-

ductive, sensory, skin, muscular, and endocrine tropism). We accepted isolation of the virus,

viral proteins or genetic material, or diagnostic symptoms of the virus (such as characteristic

histological damage) as evidence of infection within an organ system but did not accept gener-

alised symptoms such as inflammation.

Human-to-human transmissibility was specified using infectivity/transmissibility levels,

based on previous conceptual models and a systematic compilation and review of evidence

[4,5,12]. Level 2 denotes a virus capable of infecting humans but not transmitting between

humans (R0 = 0), level 3 denotes a virus with limited human-to-human transmissibility

(0< R0� 1), and level 4 denotes a virus with sustained human-to-human transmissibility

(R0� 1). Host range was specified as either ‘narrow’ (infection known only within humans or

humans plus nonhuman primates) or ‘broad’ (infection known in mammals or animals

beyond primates) [5]. Binary variables were also sourced as to whether infection was known

within a) humans only, b) nonhuman primates, c) other mammals, and d) birds.

To identify potential differences in risk factors between adapted and nonadapted viruses,

we also categorised whether each virus was zoonotic. We considered a virus to be zoonotic if it

had transmissibility level 2 or 3 or had transmissibility level 4 and was known to infect nonhu-

man hosts (excluding anthroponotic viruses, e.g., measles morbillivirus). We also conserva-

tively considered viruses to be zoonotic if zoonotic potential was suspected but data-deficient,

e.g., rotavirus A–C. All virulence and risk factor data pertained to natural or unintentional

artificially acquired human infection only, and data from intentional human infection, animal

infection, and in vitro infection were not considered. Viral taxonomy was included in analyses

by specifying both genome type and taxonomic family as predictors. All virulence and risk fac-

tor data are available via figshare: 10.6084/m9.figshare.7406441.v3 (https://figshare.com/

articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_Transmission_Ecology_

Predict_Virulence_of_Human_RNA_Viruses/7406441/3).

Machine learning risk factor analysis

Firstly, the 212 retained virus species were split into a training set for model fitting and a test

set for model evaluation. In order to avoid bias from an imbalance between types of viruses

assigned to training and test sets, our selection was based on random sampling, stratified by

genus–severity rating combinations. We sampled at a ratio of 75:25, i.e., for the four known

severe viruses in the genus Ebolavirus, three were randomly assigned to the training set and

the remaining one assigned to the test set. If a genus–severity combination contained less than

four viruses, all defaulted to the test set. Comparative risk factor analyses were firstly carried

out by constructing a classification tree using the R package ‘rpart’ v4.1–11 [52]. Classification

trees are a simple form of machine learning models that aim to optimally classify data points

into their correct category of outcome variable based on a structure of binary predictor splits.

Tree-based methods are well-suited for comparative analyses in which confounding often
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results from taxonomic signal or suites of otherwise co-occurring traits because their high

structure can intuitively fit complex nonlinear interactions and local effects.

A tree model was fitted to the training set to predict virulence ratings by ‘recursive parti-

tioning’, the repeated splitting of the data set using every possible binary permutation of

each predictor, and retaining the split that minimises the Gini impurity [53], defined as

1 �
Pn

i¼1
pðxiÞ

2
for outcome variable x with n possible ratings and p(xi) denoting proportion

of data with rating i, which is equal to zero for perfectly separated data. To prevent overfitting,

the tree was pruned back to the optimal branching size, taken as the most common consensus

size over 1,000 repeats of 10-fold cross-validation. To validate the predictive power of the clas-

sification tree, predictions of virulence rating were generated when applied to the test set. Tree

accuracy was then calculated, comparing the proportion of correct predictions compared to

literature-assigned ratings (assuming these to be 100% accurate as the ‘gold standard’ or

‘ground truth’). Because virulence ratings were imbalanced (i.e., only a minority of viruses

cause severe disease, so correct nonsevere classifications are likely to be achieved by chance),

accuracy was directly compared to the null model, i.e., a model with no predictors that pre-

dicted ‘nonsevere’ for all viruses. Additional diagnostics of interest (sensitivity, specificity, neg-

ative predictive value, and true skill statistic [54]) were also obtained.

Although classification trees have the advantage of presenting an interpretable schematic of

risk factor effects and directions, individual tree structures may be sensitive to particular data

points and have no intuitive measures of uncertainty. We therefore generated a further 200

partitions of our data into alternative training/test sets using the random stratified sampling

procedure described. Then, for each partition, we constructed a random forest, an ensemble

collection of a large number of bootstrapped classification trees [55]. Having many predictor

variables compared to the relatively limited and fixed number of human-infective RNA virus

species, random forests handle such ‘large p, small n’ data architecture much more easily than

traditional regression frameworks [56]. Missing data in all predictors were imputed using the R

package ‘missForest’ v1.4 [57]. Using the R package ‘randomForest’ v4.6–12 [57], random for-

ests were created containing 5,000 individual trees, each built using a bootstrapped sample of

training data and restricted to a randomly selected subset of predictors (k = 5) at each branching

split. The predictive power of the random forest approach was evaluated by averaging over the

test set predictions from all partitions. Receiver operating characteristic curves were visualised

and area under curves calculated to directly compare to the classification tree methodology.

Because of their high structuring, random forest models cannot give a simple parametric pre-

dictor effect size and direction (e.g., an odds ratio). Instead, potential virulence risk factors were

evaluated using two metrics: variable importance and partial dependence. Variable importance

is calculated as the mean decrease in Gini impurity following tree splits on the predictor and

can be considered as how informative the risk factor was towards correctly predicting virulence.

Partial dependence is calculated as the mean relative change in log-odds of predicting severe vir-

ulence, which were converted to predicted probabilities of severity associated with each risk fac-

tor. Partial dependence describes marginal effects averaging across any influence of other

predictors, and, as such, point estimates may not reflect any complex risk factor interactions.

Therefore, to test hypotheses regarding virulence risk factors, we present both averaged random

forest partial dependence and the less robust but more accessible single classification tree for its

ease of interpretation in risk factor structure and directly compare the statistical validity of both

methods by plotting receiver operating characteristic curves. All modelling was carried out in R

v3.4.3 [58] with a supporting R script available via figshare: 10.6084/m9.figshare.7406441.v3

(https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_

Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/7406441/3).
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Supporting information

S1 Table. Virulence literature rating data for human RNA virus training data set. Viru-

lence data for 212 human virus species ordered by genome type and taxonomy, including dis-

ease severity rating and supporting criteria for viruses rated ‘severe’, whether virus is known to

have caused fatalities in vulnerable individuals and/or otherwise healthy adults, and whether

virus is known to have ‘severe’ strains if species is rated ‘nonsevere’. Both disease severity rat-

ing/supporting criteria following the literature protocol given in the main text and mean pre-

dicted probability of severe disease from the random forest models are given. Bold type

denotes when predictions do not match literature-based ratings. Dashes indicate predictions

were not generated because fewer than four viruses were observed with this genus–severity

combination and virus always defaulted to training set. AIDS, acquired immunodeficiency

syndrome; CFR, case fatality ratio; HFRS, hantavirus haemorrhagic fever with renal syndrome;

HPS, hantavirus pulmonary syndrome; HTLV, human T-lymphotropic virus.

(PDF)

S2 Table. Partial dependence from random forest models for all predictor variables. Partial

dependence given as mean marginal relative change in log-odds and mean predicted probabil-

ity of classifying virulence as ‘severe’ for all predictor variables from random forest models fea-

turing all viruses and models featuring zoonotic viruses only.

(PDF)

S3 Table. Diagnostics of random forest models using stringent data subsets. Predictive per-

formance metrics of random forest models applied to data subsets, excluding viruses with low-

certainty data (n denotes number of viruses excluded). Diagnostics indicate mean values across

200 training/test partitions sampled separately for each data subset. Otherwise, random forest

methodology follows that of Materials and Methods. Supporting data are available via figshare:

10.6084/m9.figshare.7406441.v3 (https://figshare.com/articles/Data_and_supporting_R_

script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_

RNA_Viruses/7406441/3).

(CSV)

S4 Table. Six-rank system of classifying virulence for human RNA viruses. Six-rank system

of classifying human RNA virus virulence with available data (specifically, severity rating from

main text, fatalities in vulnerable individuals and healthy adults, and severe strains), along with

example viruses and number of viruses fitting each exclusive rank’s criteria.

(PDF)

S5 Table. Diagnostics of random forest models predicting alternative metrics of virulence.

Predictive performance metrics of random forest models predicting alternative virulence mea-

sures using different two-category definitions of ‘severe’ (n denotes number of viruses consid-

ered ‘severe’ using that definition). Vulnerable individuals are defined as those age 16 and

below, age 60 and above, immunosuppressed, having comorbidities, or otherwise cited as

being ‘at-risk’. Ranks follow those given in Table S5. Diagnostics indicate mean values

across 200 training/test partitions sampled separately for each virulence metric. Otherwise,

random forest methodology follows that of Materials and Methods. Supporting data are avail-

able via figshare: 10.6084/m9.figshare.7406441.v3 (https://figshare.com/articles/Data_and_

supporting_R_script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_

of_Human_RNA_Viruses/7406441/3).

(CSV)
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S1 Fig. Variable importance from random forest models using stringent data subsets. Vari-

able importance for virulence risk factors from random forest models applied to data sets,

excluding a) viruses only known to infect humans from serological evidence (n = 36), b)

viruses with<20 recognised human infections (n = 55), and c) viruses with poor data quality

in at least one predictor (n = 71). Variable importance is calculated as the relative mean

decrease in Gini impurity scaled against the most informative predictor within each model

alongside importance from the main analysis for comparison. Points denote mean values

across 200 training/test partitions. Error bars denote ± 1 standard deviation. Colour key

denotes type of predictor variable. Supporting data are available via figshare: 10.6084/m9.

figshare.7406441.v3 (https://figshare.com/articles/Data_and_supporting_R_script_for_

Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/

7406441/3).

(TIF)

S2 Fig. Partial dependence from random forest models using stringent data subsets. Pre-

dicted probability of classifying virulence as ‘severe’ for each of the most informative risk fac-

tors from random forest models applied to data sets excluding a) viruses only known to infect

humans from serological evidence (n = 36), b) viruses with <20 recognised human infections

(n = 55), and c) viruses with poor data quality in at least one predictor (n = 71) alongside pre-

dicted probabilities from the main analysis for comparison. Probabilities given are marginal,

i.e., averaging over any effects of other predictors. Because each data subset required resam-

pling of the training and test partitions, note that raw prevalence of ‘severe’ virulence differed

between each model (see S3 Table). Boxes denote distribution of probabilities across 200

training/test partitions, with heavy lines denoting median probability. Colour key denotes pre-

dictor variable type as in Fig 3, i.e., blue = tissue tropism, green = transmissibility, red = trans-

mission route. Supporting data are available via figshare: 10.6084/m9.figshare.7406441.v3

(https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_Tropism_and_

Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/7406441/3).

(TIF)

S3 Fig. Variable importance from random forest models predicting alternative metrics of

virulence. Variable importance for virulence risk factors from random forest models predict-

ing alternative virulence measures using different two-category definitions of ‘severe’, calcu-

lated as the relative mean decrease in Gini impurity scaled against the most informative

predictor within each model alongside importance from the main analysis for comparison.

Points denote mean values across 200 training/test partitions. Error bars denote ± 1 standard

deviation. Colour key denotes type of predictor variable. Supporting data are available via fig-

share: 10.6084/m9.figshare.7406441.v3 (https://figshare.com/articles/Data_and_supporting_

R_script_for_Tissue_Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_

RNA_Viruses/7406441/3).

(TIF)

S4 Fig. Partial dependence from random forest models using predicting alternative met-

rics of virulence. Predicted probability of classifying virulence as ‘severe’ in alternative viru-

lence measures for each of the most informative risk factors from random forest models

alongside predicted probabilities from the main analysis for comparison. Probabilities given

are marginal, i.e., averaging over any effects of other predictors. Because each measurement

used a different two-category definition of ‘severe’, note that the raw prevalence of ‘severe’ vir-

ulence differed between each model (see S5 Table). Boxes denote distribution of probabilities

across 200 training/test partitions, with heavy lines denoting median probability. Colour key
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denotes predictor variable type as in Fig 3, i.e., blue = tissue tropism, green = transmissibility,

red = transmission route. Supporting data are available via figshare: 10.6084/m9.figshare.

7406441.v3 (https://figshare.com/articles/Data_and_supporting_R_script_for_Tissue_

Tropism_and_Transmission_Ecology_Predict_Virulence_of_Human_RNA_Viruses/

7406441/3).

(TIF)
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