59 research outputs found
Measurement of the Intrinsic Radiopurity of Cs-137/U-235/U-238/Th-232 in CsI(Tl) Crystal Scintillators
The inorganic crystal scintillator CsI(Tl) has been used for low energy
neutrino and Dark Matter experiments, where the intrinsic radiopurity is an
issue of major importance. Low-background data were taken with a CsI(Tl)
crystal array at the Kuo-Sheng Reactor Neutrino Laboratory. The pulse shape
discrimination capabilities of the crystal, as well as the temporal and spatial
correlations of the events, provide powerful means of measuring the intrinsic
radiopurity of Cs-137 as well as the U-235, U-238 and Th-232 series. The event
selection algorithms are described, with which the decay half-lives of Po-218,
Po-214, Rn-220, Po-216 and Po-212 were derived. The measurements of the
contamination levels, their concentration gradients with the crystal growth
axis, and the uniformity among different crystal samples, are reported. The
radiopurity in the U-238 and Th-232 series are comparable to those of the best
reported in other crystal scintillators. Significant improvements in
measurement sensitivities were achieved, similar to those from dedicated
massive liquid scintillator detector. This analysis also provides in situ
measurements of the detector performance parameters, such as spatial
resolution, quenching factors, and data acquisition dead time.Comment: 28 pages, 12 figure
Critical revision of the ZEPLIN-I sensitivity to WIMP interactions
The ZEPLIN collaboration has recently published its first result presenting a
maximum sensitivity of picobarn for a WIMP mass of
60 GeV. The analysis is based on a discrimination method using the
different time distribution of scintillation light generated in electron recoil
and nuclear recoil interactions. We show that the methodology followed both for
the calibration of the ZEPLIN-I detector response and for the estimation of the
discrimination power is not reliable enough to claim any background
discrimination at the present stage. The ZEPLIN-I sensitivity appears then to
be in the order of 10 picobarn, three orders of magnitude above the
claimed 1.1 10 picobarn.Comment: 8 pages, 4 figures, minor corrections, two references updated, final
version accepted in Physics Letters
DNA/RNA: Building Blocks of Life Under UV Irradiation
International audienceDuring the last 10 years, intense experimental and theoretical work has proven the existence of ultrafast nonradiative decay routes for UV-excited monomeric nucleic acid bases, accounting for their high photostability. This mechanism has been explained by the occurrence of easily accessible conical intersections connecting the first excited ππ* state with the ground state. However, recent studies of substituent and solvent effects indicate that the situation is more complicated than what was initially thought, notably by the presence of dark excited states. Moreover, the actual shape of the excited-state potential energy surface may induce nonexponential dynamics. Further efforts are needed in order to clarify how various environmental factors affect the structural and dynamical aspects of the nucleic acid base excited states
Ultrafast intersystem crossing of 4-Thiothymidine inaqueous solution
Ultrafast intersystem crossing of UVA-sensitive 4-thiothymidine in aqueous solution was investigated by pump?probe transient absorption. 4-Thiothymidine in the excited singlet state exhibited a distinctively different photophysical pathway from that of thymidine, with intersystem crossing to the triplet manifold being dominant and the triplet formation being completed within approximately 10 ps. This was further supported by quantum chemical calculations. We propose that the unique behavior of photoexcited 4-thiothymidine results from its distinctive molecular and electronic structures and that the triplet form is the initial toxic source to DNA and other biomolecules
- …