231 research outputs found

    Pteropod eggs released at high pCO2 lack resilience to ocean acidification

    Get PDF
    The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750 Όatm and 1200 Όatm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600 m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades

    Shifting ocean carbonate chemistry during the Eocene-Oligocene climate transition: implications for deep ocean Mg/Ca paleothermometry

    Get PDF
    To date, no conclusive evidence has been identified for intermediate or deep water cooling associated with the > 1 parts per thousand benthic delta O-18 increase at the Eocene-Oligocene transition (EOT) when large permanent ice sheets first appeared on Antarctica. Interpretation of this isotopic shift as purely ice volume change necessitates bipolar glaciation in the early Oligocene approaching that of the Last Glacial Maximum. To test this hypothesis, it is necessary to have knowledge about deep water temperature, which previous studies have attempted to reconstruct using benthic foraminiferal Mg/Ca ratios. However, it appears likely that contemporaneous changes in ocean carbonate chemistry compromised the Mg/Ca temperature sensitivity of benthic foraminifera at deep sites. New geochemical proxy records from a relatively shallow core, ODP Site 1263 (estimated paleodepth of 2100 m on the Walvis Ridge), reveal that carbonate chemistry change across the EOT was not limited to deep sites but extended well above the lysocline, critically limiting our ability to obtain reliable estimates of deep-ocean cooling during that time. Benthic Li/Ca measurements, used as a proxy for [CO32-], suggest that [CO32-] increased by similar to 29 mu mol/kg at Site 1263 across the EOT and likely impacted benthic foraminiferal Mg/Ca. A [CO32-]-benthic Mg/Ca relationship is most apparent during the early EOT when the overall increase in [CO32-] is interrupted by an apparent dissolution event. Planktonic d18O and Mg/Ca records suggest no change in thermocline temperature and a delta O-18(seawater) increase of up to 0.6 parts per thousand at this site across the EOT, consistent with previous estimates and supporting the absence of extensive bipolar glaciation in the early Oligocene

    Pteropods counter mechanical damage and dissolution through extensive shell repair

    Get PDF
    The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall. One specimen collected within Fram Strait with a history of mechanical and dissolution damage generated four times the thickness of the original shell in repair material. The ability of pteropods to repair and maintain their shells, despite progressive loss, demonstrates a further resilience of these organisms to ocean acidification but at a likely metabolic cost

    Outer organic layer and internal repair mechanism protects pteropod Limacina helicina from ocean acidification

    Get PDF
    Scarred shells of polar pteropod Limacina helicina collected from the Greenland Sea in June 2012 reveal a history of damage, most likely failed predation, in earlier life stages. Evidence of shell fracture and subsequent re-growth is commonly observed in specimens recovered from the sub-Arctic and further afield. However, at one site within sea–ice on the Greenland shelf, shells that had been subject to mechanical damage were also found to exhibit considerable dissolution. It was evident that shell dissolution was localised to areas where the organic, periostracal sheet that covers the outer shell had been damaged at some earlier stage during the animal’s life. Where the periostracum remained intact, the shell appeared pristine with no sign of dissolution. Specimens which appeared to be pristine following collection were incubated for four days. Scarring of shells that received periostracal damage during collection only became evident in specimens that were incubated in waters undersaturated with respect to aragonite, ΩAr≀1. While the waters from which the damaged specimens were collected at the Greenland Sea sea–ice margin were not ΩAr≀1, the water column did exhibit the lowest ΩAr values observed in the Greenland and Barents Seas, and was likely to have approached ΩAr≀1 during the winter months. We demonstrate that L. helicina shells are only susceptible to dissolution where both the periostracum has been breached and the aragonite beneath the breach is exposed to waters of ΩAr≀1. Exposure of multiple layers of aragonite in areas of deep dissolution indicate that, as with many molluscs, L. helicina is able to patch up dissolution damage to the shell by secreting additional aragonite internally and maintain their shell. We conclude that, unless breached, the periostracum provides an effective shield for pteropod shells against dissolution in waters ΩAr≀1, and when dissolution does occur the animal has an effective means of self-repair. We suggest that future studies of pteropod shell condition are undertaken on specimens from which the periostracum has not been removed in preparation

    "Live” (stained) benthic foraminiferal living depths, stable isotopes, and taxonomy offshore South Georgia, Southern Ocean: implications for calcification depths

    Get PDF
    It is widely held that benthic foraminifera exhibit species-specific calcification depth preferences, with their tests recording sediment pore water chemistry at that depth (i.e. stable isotope and trace metal compositions). This assumed depth habitat-specific pore water chemistry relationship has been used to reconstruct various palaeoenvironmental parameters, such as bottom water oxygenation. However, many deep-water foraminiferal studies show wide intra-species variation in sediment living depth but relatively narrow intra-species variation in stable isotope composition. To investigate this depth habitat- stable isotope relationship on the shelf we analysed depth distribution and stable isotopes of “living” (Rose Bengal stained) benthic foraminifera from two box cores collected on the South Georgia shelf (ranging from 250–300 m water depth). We provide a comprehensive taxonomic analysis of the benthic fauna, comprising 79 taxonomic groupings. The fauna shows close affinities with shelf assemblages from around Antarctica. We find “live” specimens of a number calcareous species from a range of depths in the sediment column. Stable isotope ratios (ή13C and ή18O) were measured on stained specimens of three species, Astrononion echolsi, Cassidulinoides porrectus and Buccella sp. 1, at 1 cm depth intervals within the down-core sediment sequences. In agreement with studies in deep water settings, we find no significant intraspecies variability in either ή13C foram or ή18O foram with sediment living depth on the South Georgia shelf. Our findings add to the growing evidence that infaunal benthic foraminiferal species calcify at a fixed depth. Given the wide range of depths that we find “living” ‘infaunal’ species, we speculate that they may actually calcify predominantly at the sediment-seawater interface, where carbonate ion concentration and organic carbon availability is at a maximum

    Remote but not isolated – microplastics and mesoplastics present in the sub-surface waters of the Canadian Arctic Archipelago

    Get PDF
    As the remote Canadian Arctic Archipelago (CAA) becomes increasingly connected to the rest of the world, there is an impetus to monitor the possible impact of this connectivity. The potential for increases in localised sources of plastic pollution resulting from the increasing navigability of the remote north has yet to be explored. Here we investigate microplastic samples which were collected aboard the Canadian Coast Guard Ship (CCGS) Amundsen in the summer of 2018 using the underway pump and a filtration system with Fourier transform infrared analysis. We investigate the character, abundance, and distribution of microplastic particles and fibres in the sub-surface waters across the Canadian Arctic and add to the limited dataset on plastic pollution in this region. We find that there are low concentrations of microplastics ranging from 0 to 0.282 n L–1 (average 0.031 ± 0.017 n L–1), comprising 71% polyester and acrylics. We investigate the size distribution of retained particles and fibres on three different filter mesh sizes connected to the underway pump (300, 100, and 50 ÎŒm) and find that a 300 ÎŒm mesh and a 100 ÎŒm mesh retain only 6 and 56%, respectively, of the total particles and fibres. We explore the role of shipping as a potential source of textile fibres and we suggest that future monitoring of plastics in the Canadian Arctic should use the current shipping fleet to monitor its own plastic footprint, utilising the underway pump and mesh sizes < 100 ÎŒm

    Pteropods counter mechanical damage and dissolution through extensive shell repair.

    Get PDF
    The dissolution of the delicate shells of sea butterflies, or pteropods, has epitomised discussions regarding ecosystem vulnerability to ocean acidification over the last decade. However, a recent demonstration that the organic coating of the shell, the periostracum, is effective in inhibiting dissolution suggests that pteropod shells may not be as susceptible to ocean acidification as previously thought. Here we use micro-CT technology to show how, despite losing the entire thickness of the original shell in localised areas, specimens of polar species Limacina helicina maintain shell integrity by thickening the inner shell wall. One specimen collected within Fram Strait with a history of mechanical and dissolution damage generated four times the thickness of the original shell in repair material. The ability of pteropods to repair and maintain their shells, despite progressive loss, demonstrates a further resilience of these organisms to ocean acidification but at a likely metabolic cost

    Evolution of South Atlantic density and chemical stratification across the last deglaciation.

    Get PDF
    Explanations of the glacial-interglacial variations in atmospheric pCO2 invoke a significant role for the deep ocean in the storage of CO2. Deep-ocean density stratification has been proposed as a mechanism to promote the storage of CO2 in the deep ocean during glacial times. A wealth of proxy data supports the presence of a "chemical divide" between intermediate and deep water in the glacial Atlantic Ocean, which indirectly points to an increase in deep-ocean density stratification. However, direct observational evidence of changes in the primary controls of ocean density stratification, i.e., temperature and salinity, remain scarce. Here, we use Mg/Ca-derived seawater temperature and salinity estimates determined from temperature-corrected ÎŽ(18)O measurements on the benthic foraminifer Uvigerina spp. from deep and intermediate water-depth marine sediment cores to reconstruct the changes in density of sub-Antarctic South Atlantic water masses over the last deglaciation (i.e., 22-2 ka before present). We find that a major breakdown in the physical density stratification significantly lags the breakdown of the deep-intermediate chemical divide, as indicated by the chemical tracers of benthic foraminifer ÎŽ(13)C and foraminifer/coral (14)C. Our results indicate that chemical destratification likely resulted in the first rise in atmospheric pCO2, whereas the density destratification of the deep South Atlantic lags the second rise in atmospheric pCO2 during the late deglacial period. Our findings emphasize that the physical and chemical destratification of the ocean are not as tightly coupled as generally assumed.We are grateful to I. Mather, J. Rolfe, F. Dewilde and G. Isguder for preparing and performing isotopic analyses, as well as C. Daunt, S. Souanef-Ureta and M. Greaves for technical assistance in performing trace element analysis. J.R. was funded jointly by the British Geological Survey/British Antarctic Survey (Natural Environment Research Council) and the University of Cambridge. J.G. was funded by the Gates Cambridge Trust. L.C.S. acknowledges support from the Royal Society and NERC grant NE/J010545/1. C.W. acknowledges support from the European Research Council grant ACCLIMATE/no 339108. This is LSCE contribution 5514. This work was funded (in part) by the European Research Council (ERC grant 2010-NEWLOG ADG-267931 HE). N.V.R. acknowledges support from EU RTN NICE (no. 36127). We thank the captain and crew of the RRS James Clark Ross for facilitating the collection of the marine sediment core GC528.This is the author accepted manuscript. The final version is available from PNAS via http://dx.doi.org/10.1073/pnas.151125211
    • 

    corecore