8 research outputs found

    Gamma Ray Bursts: recent results and connections to very high energy Cosmic Rays and Neutrinos

    Full text link
    Gamma-ray bursts are the most concentrated explosions in the Universe. They have been detected electromagnetically at energies up to tens of GeV, and it is suspected that they could be active at least up to TeV energies. It is also speculated that they could emit cosmic rays and neutrinos at energies reaching up to the 1018102010^{18}-10^{20} eV range. Here we review the recent developments in the photon phenomenology in the light of \swift and \fermi satellite observations, as well as recent IceCube upper limits on their neutrino luminosity. We discuss some of the theoretical models developed to explain these observations and their possible contribution to a very high energy cosmic ray and neutrino background.Comment: 12 pages, 7 figures. Text of a plenary lecture at the PASCOS 12 conference, Merida, Yucatan, Mexico, June 2012; to appear in J.Phys. (Conf. Series

    GRB Fireball Physics: Prompt and Early Emission

    Full text link
    We review the fireball shock model of gamma-ray burst prompt and early afterglow emission in light of rapid follow-up measurements made and enabled by the multi-wavelength Swift satellite. These observations are leading to a reappraisal and expansion of the previous standard view of the GRB and its fireball. New information on the behavior of the burst and afterglow on minutes to hour timescales has led, among other results, to the discovery and follow-up of short GRB afterglows, the opening up of the z>6 redshift range, and the first prompt multi-wavelength observations of a long GRB-supernova. We discuss the salient observational results and some associated theoretical issues.Comment: 23 pages. Published in the New Journal of Physics Focus Issue, "Focus on Gamma-Ray Bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer & J. Greiner). V2: Minor change

    Comprehensive multi-wavelength modelling of the afterglow of GRB050525A

    Full text link
    The Swift era has posed a challenge to the standard blast-wave model of Gamma Ray Burst (GRB) afterglows. The key observational features expected within the model are rarely observed, such as the achromatic steepening (`jet-break') of the light curves. The observed afterglow light curves showcase additional complex features requiring modifications within the standard model. Here we present optical/NIR observations, millimeter upper limits and comprehensive broadband modelling of the afterglow of the bright GRB 0505025A, detected by Swift. This afterglow cannot be explained by the simplistic form of the standard blast-wave model. We attempt modelling the multi-wavelength light curves using (i) a forward-reverse shock model, (ii) a two-component outflow model and (iii) blast-wave model with a wind termination shock. The forward-reverse shock model cannot explain the evolution of the afterglow. The two component model is able to explain the average behaviour of the afterglow very well but cannot reproduce the fluctuations in the early X-ray light curve. The wind termination shock model reproduces the early light curves well but deviates from the global behaviour of the late-time afterglow.Comment: 20 pages, 6 figures, accepted for publication in MNRA

    Panchromatic study of GRB 060124: from precursor to afterglow

    Get PDF
    We present observations of GRB 060124, the first event for which both the prompt and the afterglow emission could be observed simultaneously and in their entirety by the three Swift instruments. Indeed, Swift-BAT triggered on a precursor ~570s before the main burst peak, and this allowed Swift to repoint the narrow field instruments to the burst position ~350s before the main burst occurred. GRB 060124 also triggered Konus-Wind, which observed the prompt emission in a harder gamma-ray band (up to 2MeV). Thanks to these exceptional circumstances, the temporal and spectral properties of the prompt emission can be studied in the optical, X-ray and gamma-ray ranges. While the X-ray emission (0.2-10keV) clearly tracks the gamma-ray burst, the optical component follows a different pattern, likely indicating a different origin, possibly the onset of external shocks. The prompt GRB spectrum shows significant spectral evolution, with both the peak energy and the spectral index varying. As observed in several long GRBs, significant lags are measured between the hard- and low-energy components, showing that this behaviour extends over 3 decades in energy. The GRB peaks are also much broader at soft energies. This is related to the temporal evolution of the spectrum, and can be accounted for by assuming that the electron spectral index softened with time. The burst energy (E_iso~5x10^{53} erg) and average peak energy (E_p~300keV) make GRB 060124 consistent with the Amati relation. The X-ray afterglow is characterized by a decay which presents a break at t_b~10^5s.Comment: 15 pages, 14 figures, 6 tables. Astronomy and Astrophysics, accepted. Revised UVOT photometr

    Extreme Properties Of GRB061007: A Highly Energetic Or A Highly Collimated Burst?

    Get PDF
    GRB061007 is the brightest gamma-ray burst (GRB) to be detected by Swift and is accompanied by an exceptionally luminous afterglow that had a V-band magnitude <11.1 at 80s after the prompt emission. From the start of the Swift observations the afterglow decayed as a power law with a slope of \alpha_X=1.66+/-0.01 in the X-ray and \alpha_{opt}=1.64+/-0.01 in the UV/optical, up to the point that it was no longer detected above background in the optical or X-ray bands. The brightness of this GRB and the similarity in the decay rate of the X-ray, optical and gamma-ray emission from 100s after the trigger distinguish this burst from others and present a challenge to the fireball model. The lack of a cooling or jet break in the afterglow up to \~10^5s constrains any model that can produce the large luminosity observed in GRB061007, which we found to require either an excessively large kinetic energy or highly collimated outflow. Analysis of the multi-wavelength spectral and high-resolution temporal data taken with Swift suggest an early time jet-break to be a more plausible scenario. This must have occurred within 80s of the prompt emission, which places an upper limit on the jet opening angle of \theta_j=0.8deg. Such a highly collimated outflow resolves the energy budget problem presented in a spherical emission model, reducing the isotropic equivalent energy of this burst to E_{\gamma}^{corr}=10^{50} ergs; consistent with other GRBs.Comment: Accepted by MNRAS, 11 pages, 3 figure

    Gamma-Ray Bursts

    Get PDF
    Gamma-ray bursts are the most luminous explosions in the Universe, and their origin and mechanism are the focus of intense research and debate. More than three decades after their discovery, and after pioneering breakthroughs from space and ground experiments, their study is entering a new phase with the recently launched Swift satellite. The interplay between these observations and theoretical models of the prompt gamma ray burst and its afterglow is reviewed.Comment: To appear in Rep. Prog. Phys., 74 pages, 11 figures, uses iopart.cls macros; revisions and updated reference
    corecore