89 research outputs found

    X-rays from the colliding wind binary WR 146

    Full text link
    The X-ray emission from the massive binary WR 146R is analysed in the framework of the colliding stellar wind (CSW) picture. The theoretical CSW model spectra match well the shape of the observed X-ray spectrum of WR 146R but they overestimate considerably the observed X-ray flux (emission measure). This is valid both in the case of complete temperature equalization and in the case of partial electron heating at the shock fronts (different electron and ion temperatures), but, there are indications for a better correspondence between model predictions and observations for the latter. To reconcile the model predictions and observations, the mass-loss rate of WR 146 must be reduced by a factor of 8 - 10 compared to the currently accepted value for this object (the latter already takes clumping into account). No excess X-ray absorption is derived from the CSW modelling.Comment: Accepted for publication in MNRAS; 9 pages, 4 figires, 1 tabl

    Co-evolution and co-adaptation in protein networks

    Get PDF
    AbstractInteracting or functionally related proteins have been repeatedly shown to have similar phylogenetic trees. Two main hypotheses have been proposed to explain this fact. One involves compensatory changes between the two protein families (co-adaptation). The other states that the tree similarity may be an indirect consequence of the involvement of the two proteins in similar cellular process, which in turn would be reflected by similar evolutionary pressure on the corresponding sequences. There are published data supporting both propositions, and currently the available information is compatible with both hypotheses being true, in an scenario in which both sets of forces are shaping the tree similarity at different levels

    Automatic methods for predicting functionally important residues

    Get PDF
    Sequence analysis is often the first guide for the prediction of residues in a protein family that may have functional significance. A few methods have been proposed which use the division of protein families into subfamilies in the search for those positions that could have some functional significance for the whole family, but at the same time which exhibit the specificity of each subfamily (“Tree-determinant residues”). However, there are still many unsolved questions like the best division of a protein family into subfamilies, or the accurate detection of sequence variation patterns characteristic of different subfamilies. Here we present a systematic study in a significant number of protein families, testing the statistical meaning of the Tree-determinant residues predicted by three different methods that represent the range of available approaches. The first method takes as a starting point a phylogenetic representation of a protein family and, following the principle of Relative Entropy from Information Theory, automatically searches for the optimal division of the family int

    EVAcon: a protein contact prediction evaluation service

    Get PDF
    Here we introduce EVAcon, an automated web service that evaluates the performance of contact prediction servers. Currently, EVAcon is monitoring nine servers, four of which are specialized in contact prediction and five are general structure prediction servers. Results are compared for all newly determined experimental structures deposited into PDB (∼5–50 per week). EVAcon allows for a precise comparison of the results based on a system of common protein subsets and the commonly accepted evaluation criteria that are also used in the corresponding category of the CASP assessment. EVAcon is a new service added to the functionality of the EVA system for the continuous evaluation of protein structure prediction servers. The new service is accesible from any of the three EVA mirrors: PDG (CNB-CSIC, Madrid) (); CUBIC (Columbia University, NYC) (); and Sali Lab (UCSF, San Francisco) ()

    Enhancing the prediction of protein pairings between interacting families using orthology information

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has repeatedly been shown that interacting protein families tend to have similar phylogenetic trees. These similarities can be used to predicting the mapping between two families of interacting proteins (i.e. which proteins from one family interact with which members of the other). The correct mapping will be that which maximizes the similarity between the trees. The two families may eventually comprise orthologs and paralogs, if members of the two families are present in more than one organism. This fact can be exploited to restrict the possible mappings, simply by impeding links between proteins of different organisms. We present here an algorithm to predict the mapping between families of interacting proteins which is able to incorporate information regarding orthologues, or any other assignment of proteins to "classes" that may restrict possible mappings.</p> <p>Results</p> <p>For the first time in methods for predicting mappings, we have tested this new approach on a large number of interacting protein domains in order to statistically assess its performance. The method accurately predicts around 80% in the most favourable cases. We also analysed in detail the results of the method for a well defined case of interacting families, the sensor and kinase components of the Ntr-type two-component system, for which up to 98% of the pairings predicted by the method were correct.</p> <p>Conclusion</p> <p>Based on the well established relationship between tree similarity and interactions we developed a method for predicting the mapping between two interacting families using genomic information alone. The program is available through a web interface.</p

    Selection of organisms for the co-evolution-based study of protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction and study of protein interactions and functional relationships based on similarity of phylogenetic trees, exemplified by the <it>mirrortree </it>and related methodologies, is being widely used. Although dependence between the performance of these methods and the set of organisms used to build the trees was suspected, so far nobody assessed it in an exhaustive way, and, in general, previous works used as many organisms as possible. In this work we asses the effect of using different sets of organism (chosen according with various phylogenetic criteria) on the performance of this methodology in detecting protein interactions of different nature.</p> <p>Results</p> <p>We show that the performance of three <it>mirrortree</it>-related methodologies depends on the set of organisms used for building the trees, and it is not always directly related to the number of organisms in a simple way. Certain subsets of organisms seem to be more suitable for the predictions of certain types of interactions. This relationship between type of interaction and optimal set of organism for detecting them makes sense in the light of the phylogenetic distribution of the organisms and the nature of the interactions.</p> <p>Conclusions</p> <p>In order to obtain an optimal performance when predicting protein interactions, it is recommended to use different sets of organisms depending on the available computational resources and data, as well as the type of interactions of interest.</p

    Network-Based Methods for Approaching Human Pathologies from a Phenotypic Point of View

    Get PDF
    Network and systemic approaches to studying human pathologies are helping us to gain insight into the molecular mechanisms of and potential therapeutic interventions for human diseases, especially for complex diseases where large numbers of genes are involved. The complex human pathological landscape is traditionally partitioned into discrete “diseases”; however, that partition is sometimes problematic, as diseases are highly heterogeneous and can differ greatly from one patient to another. Moreover, for many pathological states, the set of symptoms (phenotypes) manifested by the patient is not enough to diagnose a particular disease. On the contrary, phenotypes, by definition, are directly observable and can be closer to the molecular basis of the pathology. These clinical phenotypes are also important for personalised medicine, as they can help stratify patients and design personalised interventions. For these reasons, network and systemic approaches to pathologies are gradually incorporating phenotypic information. This review covers the current landscape of phenotype-centred network approaches to study different aspects of human diseasesThis work was partially funded by The Spanish Ministry of Economy and Competitiveness with European Regional Development Fund [grant numbers PID2019-108096RB-C21 and PID2019-108096RB-C22]; the European Food Safety Authority [grant number GP/EFSA/ENCO/2020/02]; the Andalusian Government with European Regional Development Fund [grant numbers UMA18- FEDERJA-102 and PAIDI 2020:PY20-00372]; Fundacion Progreso y Salud [grant number PI-0075-2017], also from the Andalusian Government; the Ramón Areces foundation, which funds project for the investigation of rare disease (National call for research on life and material sciences, XIX edition); the University of Malaga (Ayudas del I Plan Propio) and the Institute of Health Carlos III which funds the IMPaCT-Data project. The CIBERER is an initiative from the Institute of Health Carlos III. The conclusions, findings and opinions expressed in this scientific paper reflect only the view of the authors and not the official position of the European Food Safety Authority. Partial funding for open access charge: Universidad de Málag

    TSEMA: interactive prediction of protein pairings between interacting families

    Get PDF
    An entire family of methodologies for predicting protein interactions is based on the observed fact that families of interacting proteins tend to have similar phylogenetic trees due to co-evolution. One application of this concept is the prediction of the mapping between the members of two interacting protein families (which protein within one family interacts with which protein within the other). The idea is that the real mapping would be the one maximizing the similarity between the trees. Since the exhaustive exploration of all possible mappings is not feasible for large families, current approaches use heuristic techniques which do not ensure the best solution to be found. This is why it is important to check the results proposed by heuristic techniques and to manually explore other solutions. Here we present TSEMA, the server for efficient mapping assessment. This system calculates an initial mapping between two families of proteins based on a Monte Carlo approach and allows the user to interactively modify it based on performance figures and/or specific biological knowledge. All the explored mappings are graphically shown over a representation of the phylogenetic trees. The system is freely available at . Standalone versions of the software behind the interface are available upon request from the authors

    Protein co-evolution, co-adaptation and interactions

    Get PDF
    Co-evolution has an important function in the evolution of species and it is clearly manifested in certain scenarios such as host–parasite and predator–prey interactions, symbiosis and mutualism. The extrapolation of the concepts and methodologies developed for the study of species co-evolution at the molecular level has prompted the development of a variety of computational methods able to predict protein interactions through the characteristics of co-evolution. Particularly successful have been those methods that predict interactions at the genomic level based on the detection of pairs of protein families with similar evolutionary histories (similarity of phylogenetic trees: mirrortree). Future advances in this field will require a better understanding of the molecular basis of the co-evolution of protein families. Thus, it will be important to decipher the molecular mechanisms underlying the similarity observed in phylogenetic trees of interacting proteins, distinguishing direct specific molecular interactions from other general functional constraints. In particular, it will be important to separate the effects of physical interactions within protein complexes (‘co-adaptation') from other forces that, in a less specific way, can also create general patterns of co-evolution
    corecore