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Abstract Interacting or functionally related proteins have been
repeatedly shown to have similar phylogenetic trees. Two main
hypotheses have been proposed to explain this fact. One involves
compensatory changes between the two protein families (co-
adaptation). The other states that the tree similarity may be
an indirect consequence of the involvement of the two proteins
in similar cellular process, which in turn would be reflected by
similar evolutionary pressure on the corresponding sequences.
There are published data supporting both propositions, and cur-
rently the available information is compatible with both hypoth-
eses being true, in an scenario in which both sets of forces are
shaping the tree similarity at different levels.
� 2008 Federation of European Biochemical Societies. Pub-
lished by Elsevier B.V. All rights reserved.

Keywords: Co-evolution; Co-adaptation; Protein interaction;
Mirrortree
1. Introduction

Proteins rarely act in isolation and their biological roles can

only be fully understood in the context of their complex inter-

actions with others. One of the prototypic elements studied in

Systems Biology is the ‘‘interactome’’ [1–4], the network of

interactions and functional relationships between the compo-

nents of a proteome. The study of the interactome from a sys-

temic (‘‘top-down’’) perspective has provided important

biological information not evident in the properties of the indi-

vidual proteins [5–8].

One of the most important, yet still poorly understood, phe-

nomenon related to protein interactions is the similar evolu-

tionary paths typically followed by interacting and/or

functionally related proteins (co-evolution3). This is an inter-

esting theoretical problem that, as argued in the last section
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3Here we will use the term ‘‘co-evolution’’ to refer to the similarity of
evolutionary histories, which is an observable and can be quantified,
while we will refer to ‘‘co-adaptation’’ as a possible explanation for the
observed co-evolutionary changes. We use this nomenclature because
it is widely accepted in the field of molecular evolution, even if it differs
from that used in fields such as Ecology where ‘‘co-evolution’’ involves
adaptive compensatory changes [9].
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of this review, also has important practical consequences for

the planning of mutagenesis experiments and for the design

of protein interaction prediction algorithms.

Two general hypotheses have been proposed to explain the

similarity observed in the evolutionary history of interacting

proteins. One states that the observed co-evolution is a conse-

quence of the similar evolutionary pressure exerted on interact-

ing and functionally related proteins due to the similar control

mechanisms that act on them, for example concerted transcrip-

tion and regulation. According to this hypothesis, the observed

similarity of evolutionary histories deduced from the corre-

sponding sequences would not be a direct consequence of a

specific physical interaction between these proteins. Thus, it

may in principle be similar for groups of proteins that share

a functional relationship, such as those involved in the same

biochemical pathway or in the same macromolecular complex.

The alternative hypothesis is that the observed co-evolution

is directly related to the co-adaptation of interacting proteins.

A physical model that might underlie this process could imply

that changes which decrease a proteins stability or capacity to

fold correctly are compensated by changes in the interacting

partner in order to maintain the complex functional. Or, more

properly expressed, complexes that are functional are selected

if deleterious mutations have been properly compensated

(Fig. 1). Indeed, this model is related to the proposed co-vari-

on model of compensation [10].

In this minireview, we will summarize the bibliography on

co-evolution at the molecular level, and the studies that

support one or the other hypotheses. We will also discuss the

kind of efforts that would be required to carry out conclusive

experiments, and the potential consequences of resolving the

contribution of the physical versus general functional con-

straints in the evolution of protein complexes and interaction

networks.
2. Co-evolution and protein interactions

The co-evolution of certain features in the sequences of pro-

teins that interact at the functional and/or physical level is well

established. Co-evolution at the molecular level has been

repeatedly demonstrated in a variety of scenarios by different

authors, including studies of molecular co-evolution at the res-

idue and complete protein level. Note that, in this section, we

describe the co-evolutionary features observed without going

into their possible causes, which will be discussed in the next

section.
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Factors affecting the similarity of the evolutionary histories
of two interacting proteins. Many factors acting at different levels may
be responsible for the observed similarity between the phylogenetic
trees of interacting proteins. While several factors can affect
the evolutionary rate of both proteins to a similar degree, at the
sub-protein level co-adaptation may also be at play. Even at the
organism level, the underlying speciation process affects the observed
tree similarity by adding a background resemblance to any pair of
trees.
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2.1. Co-evolutionary features at the residue level

In multiple sequence alignments, some pairs of positions

show concerted mutational behaviour, such that changes in

one of the positions seem not to be independent but rather re-

lated to those at the other [11]. Correlations between intra-pro-

tein pairs have been shown to be weakly yet consistently

related to the closeness between the corresponding residues

in the three-dimensional structure of the protein [11], as well

as to other functional and structural characteristics of the in-

volved positions [12]. Inter-protein correlated pairs, those in

which the two positions belong to different protein families,

have also been shown to be closer than the average inter-pro-

tein pairs [13]. Even if these pairs are not in direct contact in

most cases, that is they are not actually at the protein–protein

interface [14], the fact that they are closer than average means

it may often be possible to use them as constraints to select the

right complex between two protein chains [13,15]. The accu-

mulation of correlated mutations between two proteins has

also been used to predict whether these two proteins interact

or not. Such predictions are based on the idea that pairs of

interacting proteins should present an enrichment of these cor-

related mutations [16].

2.2. Co-evolutionary features at the whole-chain level

Pairs of interacting or functionally related proteins have

been shown to co-evolve at different levels. Indeed, many

methods for detecting protein interactions from genomic fea-

tures, sometimes called ‘‘context-based methods’’ [8,17–19],
actually have a co-evolutionary base. The two approaches

where this co-evolutionary base is more evident are the ‘‘phy-

logenetic profiling’’ and the ‘‘mirrortree’’ methods.

A ‘‘phylogenetic profile’’ is a pattern of presence/absence of

a given protein family in a set of genomes. Proteins with sim-

ilar phylogenetic profiles, that is, with the same species distri-

bution, have been shown to be functionally or physically

interacting in many cases [20,21]. A possible explanation for

this observation is that related proteins (those that need each

other to perform a given function) must necessarily be present

in the same genomes and, since one cannot work without the

other, they never appear alone. In fact, we could say that the

‘‘existences’’ of such proteins are not independent but related

to each other, and hence they co-evolve.

The ‘‘mirrortree’’ approach is based on the observation that

interacting or functionally related proteins tend to have phylo-

genetic trees with similar shapes. This observation was first

made qualitatively for some specific cases [22,23] and later, it

was quantified and statistically evaluated in large datasets

[24,25]. Since then, this methodology has been followed by

many researches, who have improved it in different ways (i.e.

[26–33]). The relationship between protein interaction and sim-

ilarity of phylogenetic trees has been used not only to predict

whether two families interact or not, but also to predict the

mapping between the members of two families that are known

to interact, that is, the individual connections between the

leaves of their trees [34–38]. Indeed, the mirrortree quantifica-

tion of the similarity between trees has not only been used to

infer protein interactions in large datasets, but also to get a

deeper insight into the co-evolution and function of particular

interacting families [39–42].

The mirrortree methodology might be the one which more

intuitively illustrates the relationship between protein co-evo-

lution and interactions, since a phylogenetic tree encompasses

global information on the evolution of a given protein family.

Still, it is clear that ‘‘mirrortree’’ and ‘‘phylogenetic profiling’’

are conceptually related, since interacting or functionally re-

lated proteins that co-evolve can have similar trees and, ulti-

mately, they might concurrently lose their corresponding

genes. In this sense, ‘‘phylogenetic profiling’’ detects cases of

extreme co-evolution, in which not only do sequence features

co-evolve, but also the existence of the proteins themselves.
3. Co-evolution and co-adaptation

Having dealt with the evidence supporting the co-evolution

of interacting proteins, we shall now look at the possible

causes of such co-evolution. We will review the evidence sup-

porting each of the two alternative hypothesis, the one stating

that it is a direct consequence of a physical co-adaptative pro-

cess, and the alternative one proposing that it is an indirect

consequence of the similarity of their environments ultimately

reflected in evolutionary rates.

At the residue level, there is plenty of evidence indicating

that physical co-adaptation causes the observed intra-protein

co-evolution [43]. Compensatory mutations at interfaces have

been reported, particularly in fast-evolving systems such as

RNA viruses [44,45]. In these cases, a destabilising mutation

at the interface of one of the interacting partners is compen-

sated by a mutation in the other partner, which restores stabil-
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ity. These compensatory mutations have been found both, in

natural sequences, and as a result of an introduced artificial

mutation. Compensatory mutations have also been proposed

as an explanation for mutations that are pathogenic in an

organism and neutral in others [46–48]. For many of these

cases, it has been argued that the second (compensatory)

mutation may explain the neutral effect of the (otherwise

pathogenic) first mutation. Most of these disease-avoiding

compensatory mutations are within the same protein,

although a number of inter-protein compensatory mutations

have also been found [47]. Furthermore, compensatory

mutations have not only been reported between interacting

proteins but also between proteins and DNA [49] and

protein–RNA [50].

Since co-adaptation at the residue level has been observed

and it has a conceivable biophysical interpretation, it makes

sense to think that the observations of co-evolution at ‘‘sub-

protein’’ levels (i.e., segments or regions of the proteins) could

also be the result of physical compensation to some extent, fol-

lowing the co-adaptation model. Indeed, the mirrortree ap-

proach was applied to protein domains showing that the

domains responsible for the interaction (within two interacting

proteins) co-evolve [33]. This sub-protein co-evolutionary

behaviour, quantified as in mirrortree, has also been found be-

tween protein segments with high sequence conservation [32],

as well as between the protein surfaces of obliged complexes

[51].

Compensatory changes have also been proposed as the best

mechanism to explain some cases of observed co-evolution

where protein families are evolving very fast while having to

maintain highly specific interactions without crosstalk [52–

56]. In these cases, intra-organism interactions are conserved

while divergence between orthologues leads to an absence of

inter-organism interactions. The observations show that a

strong evolutionary pressure acts on those protein interac-

tions, both to maintain the intra-organism interactions and

to avoid the inter-organism interactions. Given that these

interactions derive from a common ancestral one, each inter-

acting pair probably evolved in a co-ordinated fashion, intro-

ducing mutations that are compensated in the interacting

partner in a organism-specific manner. Therefore, compensa-

tory changes are apparently the simplest way to explain these

cases and, in some of these, it was indeed possible to track the

inter-protein compensatory changes down to the residue level

[56].

Even if compensatory changes might be an influential factor,

it is obvious that there are many other factors that can affect

the evolution of interacting proteins, thereby contributing to

the similarities of the corresponding phylogenetic trees. In-

deed, two families that display similar evolutionary rates

across all taxa would have similar trees, since the changes that

occur in both families and that are responsible for shaping the

tree are of a similar magnitude. A direct relationship has been

reported between similarity of evolutionary rates and interac-

tion [57,58], which could explain the similarities in the trees

of interacting proteins without the strict requirement for co-

adaptation. Apart from this direct relationship, protein inter-

actions and evolutionary rates are indirectly related through

a number of factors. The mRNA expression of interacting pro-

teins or proteins involved in the same cellular process are often

similar, possibly due to a similar transcriptional control [59].

Moreover, the expression levels of interacting proteins has
been shown to co-evolve, in the sense that changes in the

expression levels of one of the proteins from one organism

to another are related to changes in the expression of the part-

ner, as inferred from the ‘‘codon adaptation index’’ of the cor-

responding proteins [60,61]. Closing this circle, there is the

relationship between the level of expression and the evolution-

ary rate, whereby highly expressed proteins tend to evolve

more slowly [62–64]. This is typically explained by the fact that

the mutational possibilities of important proteins (usually

‘‘hubs’’ in interaction networks) are constrained, as is their

expression, because changes in any of these two elements

would effect many other proteins. The evolutionary rate has

also been related to protein dispensability, in the sense that

essential genes evolve more slowly [62,65–67]. Essentiality

has in turn been related to protein interactions: essential pro-

teins tend to be highly connected (‘‘hubs’’) in protein interac-

tion networks [6]. A direct relationship between protein

connectivity and evolutionary rate has also been found: hubs

evolve more slowly [57,68,69]. This may be explained by muta-

tions in hubs being highly constrained since they affect many

interacting proteins. For this reason they would tend to be

more conserved. In summary, the evolutionary rate is related

to protein interactions through many different direct and indi-

rect pathways.

Another factor that could shed some light on the causes of

the observed co-evolution of interacting proteins is the specific-

ity of that co-evolution. Co-evolution particular to a pair of

proteins could be interpreted as a sign of co-adaptation, while

it makes more sense to explain broad co-evolutionary trends

involving many proteins by a general similarity of evolutionary

rates. In this sense, a number of methods are able to detect spe-

cific co-evolution excluding global co-evolutionary trends,

such as the one due to the underlying speciation process

[26,27]. Other methods, using a partial correlation formula-

tion, are directly able to quantify to which extent a co-evolu-

tionary signal is particular to a given pair of proteins [70].

Even if these initial studies point towards co-adaptation as

the cause of co-evolution, they do not provide direct evidence

and more work is needed in this respect.

In a recent study, Hakes et al. [58] have tried to rule out the

co-adaptation hypothesis by showing that residues in protein

interfaces, that in a simple model are expected to be implicated

in physical co-adaptation, do not show strong signals of co-

evolution, i.e., similar trees. These results are controversial

since previous detailed studies showed that there was co-evolu-

tion between interfaces in obliged complexes [51]. It is also

worth to point out that even if the actual residues in the inter-

faces do not co-mutate, compensatory effects of the mutations

can still occur over relatively large distances. Indeed, it was

previously shown that inter-protein correlated mutations tend

to be closer than average [13], but not necessarily in direct con-

tact [14]. In our opinion, even if co-evolution is not at play at

strict interfaces, it is still not be possible to rule out physical

co-adaptation at longer distances, possibly via ‘‘allosteric’’ ef-

fects.
4. Conclusions

The co-evolution between interacting protein could be due

to the accumulation of compensatory changes at the residue le-

vel or to similar evolutionary rates that globally affect the two
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protein families. There are results that support both hypothe-

ses, and it is conceivable that both forces are playing a role in

different degrees, at different levels, and for different cases.

It will be useful to imagine what might be the ideal experi-

ment to discriminate between these two hypotheses. One can

imagine that one such experiment could involve the detailed

comparison of the energetic contribution associated to each

mutational path in a family of proteins, possibly established

by reconstructing the ancestral sequences. This experiment

would have to be carried out for families of proteins with

known structure to make it possible to perform sufficiently de-

tailed energetic calculations. This is an obviously difficult sce-

nario since it requires detailed reconstruction of mutation

pathways, modelling of structures and biophysical character-

ization. However, it is possible that this is the closest we could

come to completely solving this problem.

On a practical sense, even if the predictive power of mirror-

tree and related methods is totally independent of any of these

hypothesis, since it only depends on the observed relationship

between co-evolution (i.e., tree similarity) and protein interac-

tions, discerning the origin of protein co-evolution has impor-

tant theoretical and practical consequences. For example,

knowing what is behind the process would speed up the devel-

opment and improvement of the co-evolution based methods

for predicting interactions, since they would be designed in a

more rational way taking this information into account. It

would also help modify, ‘‘tune’’ and redesign the specificity

of protein interactions. Finally, such information could have

profound implications in Systems Biology since it would help

to discern the evolutionary scenario that led to the complex

structure of current interactomes. In this sense, co-evolution-

ary forces might be an important factor to consider in the

models of interactome evolution [71]. None of these models

is able to explain all the observed topological features of

the interactomes. Maybe co-evolutionary forces have to be

considered in their contribution to the topological character-

istics of the protein interaction networks, since it lead to

differential connectivity degree on various regions of the inter-

actome.

Finally, it is important to consider that the two hypotheses

to explain the similarities between trees are not mutually

exclusive and both together could shape the trees of interact-

ing proteins at different scales and to different degrees. Com-

pensatory changes at the residue level have been found in

many pairs of interacting proteins, but it is difficult to con-

sider that they alone could be responsible for the global sim-

ilarity in trees. Indeed, if this were the case, a large number of

changes would be necessary to produce observable changes in

the tree topology. In the limit, tree similarity due to a large

number of compensatory changes spread throughout the

length of the protein would be indistinguishable from a tree

similarity due to similar evolutionary rates. A feasible

hypothesis that is compatible with all the available data is

that the observed tree similarity between related proteins is

mainly due to similar evolutionary rates (which are in turn

related to similar expression patterns, etc.), and that compen-

satory changes are acting locally, shaping the details of the

interacting regions.
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