13,950 research outputs found

    A cooperative conjugate gradient method for linear systems permitting multithread implementation of low complexity

    Full text link
    This paper proposes a generalization of the conjugate gradient (CG) method used to solve the equation Ax=bAx=b for a symmetric positive definite matrix AA of large size nn. The generalization consists of permitting the scalar control parameters (= stepsizes in gradient and conjugate gradient directions) to be replaced by matrices, so that multiple descent and conjugate directions are updated simultaneously. Implementation involves the use of multiple agents or threads and is referred to as cooperative CG (cCG), in which the cooperation between agents resides in the fact that the calculation of each entry of the control parameter matrix now involves information that comes from the other agents. For a sufficiently large dimension nn, the use of an optimal number of cores gives the result that the multithread implementation has worst case complexity O(n2+1/3)O(n^{2+1/3}) in exact arithmetic. Numerical experiments, that illustrate the interest of theoretical results, are carried out on a multicore computer.Comment: Expanded version of manuscript submitted to the IEEE-CDC 2012 (Conference on Decision and Control

    Prólogo

    Get PDF

    De la estructura a la función corporal

    Get PDF
    Sin resume

    Solving SAT in linear time with a neural-like membrane system

    Get PDF
    We present in this paper a neural-like membrane system solving the SAT problem in linear time. These neural Psystems are nets of cells working with multisets. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. The maximal mode of rules application and the replicative mode of communication between cells are at the core of the eficiency of these systems
    corecore