110 research outputs found

    Loss of IKKβ but not NF-κB p65 skews differentiation towards myeloid over erythroid commitment and increases myeloid progenitor self-renewal and functional long-term hematopoietic stem cells

    Get PDF
    NF-κB is an important regulator of both differentiation and function of lineage-committed hematopoietic cells. Targeted deletion of IκB kinase (IKK) β results in altered cytokine signaling and marked neutrophilia. To investigate the role of IKKβ in regulation of hematopoiesis, we employed Mx1-Cre mediated IKKβ conditional knockout mice. As previously reported, deletion of IKKβ in hematopoietic cells results in neutrophilia, and we now also noted decreased monocytes and modest anemia. Granulocyte-macrophage progenitors (GMPs) accumulated markedly in bone marrow of IKKβ deleted mice whereas the proportion and number of megakaryocyte-erythrocyte progenitors (MEP) decreased. Accordingly, we found a significantly reduced frequency of proerythroblasts and basophilic and polychromatic erythroblasts, and IKKβ-deficient bone marrow cells yielded a significantly decreased number of BFU-E compared to wild type. These changes are associated with elevated expression of C/EBPα, Gfi1, and PU.1 and diminished Gata1, Klf1, and SCL/Tal1 in IKKβ deficient Lineage-Sca1+c-Kit+ (LSK) cells. In contrast, no effect on erythropoiesis or expression of lineage-related transcription factors was found in marrow lacking NF-κB p65. Bone marrow from IKKβ knockout mice has elevated numbers of phenotypic long and short term hematopoietic stem cells (HSC). A similar increase was observed when IKKβ was deleted after marrow transplantation into a wild type host, indicating cell autonomous expansion. Myeloid progenitors from IKKβ- but not p65-deleted mice demonstrate increased serial replating in colony-forming assays, indicating increased cell autonomous self-renewal capacity. In addition, in a competitive repopulation assay deletion of IKKβ resulted in a stable advantage of bone marrow derived from IKKβ knockout mice. In summary, loss of IKKβ resulted in significant effects on hematopoiesis not seen upon NF-κB p65 deletion. These include increased myeloid and reduced erythroid transcription factors, skewing differentiation towards myeloid over erythroid differentiation, increased progenitor self-renewal, and increased number of functional long term HSCs. These data inform ongoing efforts to develop IKK inhibitors for clinical use

    C/EBP , C/EBP  Oncoproteins, or C/EBP  Preferentially Bind NF- B p50 Compared with p65, Focusing Therapeutic Targeting on the C/EBP:p50 Interaction

    Get PDF
    Canonical NF-κB activation signals stimulate nuclear translocation of p50:p65, replacing inhibitory p50:p50 with activating complexes on chromatin. C/EBP interaction with p50 homodimers provides an alternative pathway for NF-κB target gene activation, and interaction with p50:p65 may enhance gene activation. We previously found that C/EBPα cooperates with p50 but not p65 to induce Bcl-2 transcription and that C/EBPα induces Nfkb1/p50 but not RelA/p65 transcription. Using p50 and p65 variants containing the FLAG epitope at their N- or C-termini, we now demonstrate that C/EBPα, C/EBPα myeloid oncoproteins, or the LAP1, LAP2, or LIP isoforms of C/EBPβ have markedly higher affinity for p50 in comparison to p65. Deletion of the p65 trans-activation domain did not increase p65 affinity for C/EBPs, suggesting that unique residues in p50 account for specificity, and clustered mutation of HSDL in the “p50 insert” lacking in p65 weakens interaction. Also, in contrast to Nfkb1 gene deletion, absence of the RelA gene does not reduce Bcl-2 or Cebpa RNA in unstimulated cells or prevent interaction of C/EBPα with the Bcl-2 promoter. Saturating mutagenesis of the C/EBPα basic region identifies R300 and nearby residues, identical in C/EBPβ, as critical for interaction with p50. These findings support the conclusion that C/EBPs activate NF-κB target genes via contact with p50 even in the absence of canonical NF-κB activation and indicate that targeting C/EBP:p50 rather than C/EBP:p65 interaction in the nucleus will prove effective for inflammatory or malignant conditions, alone or synergistically with agents acting in the cytoplasm to reduce canonical NF-κB activation

    Desmoplastic small round cell tumors: Multimodality treatment and new risk factors

    Full text link
    BACKGROUND: To evaluate optimal therapy and potential risk factors. METHODS: Data of DSRCT patients <40 years treated in prospective CWS trials 1997-2015 were analyzed. RESULTS: Median age of 60 patients was 14.5 years. Male:female ratio was 4:1. Tumors were abdominal/retroperitoneal in 56/60 (93%). 6/60 (10%) presented with a localized mass, 16/60 (27%) regionally disseminated nodes, and 38/60 (63%) with extraperitoneal metastases. At diagnosis, 23/60 (38%) patients had effusions, 4/60 (7%) a thrombosis, and 37/54 (69%) elevated CRP. 40/60 (67%) patients underwent tumor resection, 21/60 (35%) macroscopically complete. 37/60 (62%) received chemotherapy according to CEVAIE (ifosfamide, vincristine, actinomycin D, carboplatin, epirubicin, etoposide), 15/60 (25%) VAIA (ifosfamide, vincristine, adriamycin, actinomycin D) and, 5/60 (8%) P6 (cyclophosphamide, doxorubicin, vincristine, ifosfamide, etoposide). Nine received high-dose chemotherapy, 6 received regional hyperthermia, and 20 received radiotherapy. Among 25 patients achieving complete remission, 18 (72%) received metronomic therapies. Three-year event-free (EFS) and overall survival (OS) were 11% (±8 confidence interval [CI] 95%) and 30% (±12 CI 95%), respectively, for all patients and 26.7% (±18.0 CI 95%) and 56.9% (±20.4 CI 95%) for 25 patients achieving remission. Extra-abdominal site, localized disease, no effusion or ascites only, absence of thrombosis, normal CRP, complete tumor resection, and chemotherapy with VAIA correlated with EFS in univariate analysis. In multivariate analysis, significant factors were no thrombosis and chemotherapy with VAIA. In patients achieving complete remission, metronomic therapy with cyclophosphamide/vinblastine correlated with prolonged time to relapse. CONCLUSION: Pleural effusions, venous thrombosis, and CRP elevation were identified as potential risk factors. The VAIA scheme showed best outcome. Maintenance therapy should be investigated further

    Twist-2 Controls Myeloid Lineage Development and Function

    Get PDF
    Basic helix-loop-helix (bHLH) transcription factors play critical roles in lymphoid and erythroid development; however, little is known about their role in myeloid lineage development. In this study, we identify the bHLH transcription factor Twist-2 as a key negative regulator of myeloid lineage development, as manifested by marked increases in mature myeloid populations of macrophages, neutrophils, and basophils in Twist-2–deficient mice. Mechanistic studies demonstrate that Twist-2 inhibits the proliferation as well as differentiation of granulocyte macrophage progenitors (GMP) by interacting with and inhibiting the transcription factors Runx1 and C/EBPα. Moreover, Twist-2 was found to have a contrasting effect on cytokine production: inhibiting the production of proinflammatory cytokines such as interleukin-12 (IL-12) and interferon-γ (IFNγ) while promoting the regulatory cytokine IL-10 by myeloid cells. The data from further analyses suggest that Twist-2 activates the transcription factor c-Maf, leading to IL-10 expression. In addition, Twist-2 was found to be essential for endotoxin tolerance. Thus, this study reveals the critical role of Twist-2 in regulating the development of myeloid lineages, as well as the function and inflammatory responses of mature myeloid cells

    Protein Kinase Cδ Stimulates Proteasome-Dependent Degradation of C/EBPα during Apoptosis Induction of Leukemic Cells

    Get PDF
    BACKGROUND:The precise regulation and maintenance of balance between cell proliferation, differentiation and death in metazoan are critical for tissue homeostasis. CCAAT/enhancer-binding protein alpha (C/EBPalpha) has been implicated as a key regulator of differentiation and proliferation in various cell types. Here we investigated the potential dynamic change and role of C/EBPalpha protein during apoptosis induction. METHODOLOGY/PRINCIPAL FINDINGS:Upon onset of apoptosis induced by various kinds of inducers such as NSC606985, etoposide and others, C/EBPalpha expression presented a profound down-regulation in leukemic cell lines and primary cells via induction of protein degradation and inhibition of transcription, as assessed respectively by cycloheximide inhibition test, real-time quantitative RT-PCR and luciferase reporter assay. Applying chemical inhibition, forced expression of dominant negative mutant and catalytic fragment (CF) of protein kinase Cdelta (PKCdelta), which was proteolytically activated during apoptosis induction tested, we showed that the active PKCdelta protein contributed to the increased degradation of C/EBPalpha protein. Three specific proteasome inhibitors antagonized C/EBPalpha degradation during apoptosis induction. More importantly, ectopic expression of PKCdelta-CF stimulated the ubiquitination of C/EBPalpha protein, while the chemical inhibition of PKCdelta action significantly inhibited the enhanced ubiquitination of C/EBPalpha protein under NSC606985 treatment. Additionally, silencing of C/EBPalpha expression by small interfering RNAs enhanced, while inducible expression of C/EBPalpha inhibited NSC606985/etoposide-induced apoptosis in leukemic cells. CONCLUSIONS/SIGNIFICANCE:These observations indicate that the activation of PKCdelta upon apoptosis results in the increased proteasome-dependent degradation of C/EBPalpha, which partially contributes to PKCdelta-mediated apoptosis
    corecore