102 research outputs found

    Cancer immunotherapy: Re-programming cells of the innate and adaptive immune systems

    Get PDF
    Cancers utilize multiple mechanisms to overcome immune responses. Emerging evidence suggest that immunotherapy of cancer should focus on inducing and re-programming cells of the innate and adaptive immune systems rather than focusing solely on T cells. Recently, we have shown that such a multifaceted approach can improve immunotherapy of breast cancer

    Immunotherapy of Cancer: Reprogramming Tumor/Immune Cellular Crosstalk to Improve Anti-Tumor Efficacy

    Get PDF
    Immunotherapy of cancer has been shown to be promising in prolonging patient survival. However, complete elimination of cancer and life-long relapse-free survival remain to be major challenge for anti-cancer therapeutics. We have previously reported that ex vivo reprogramming of tumor-sensitized immune cells by bryostatin 1/ionomycin (B/I) and the gamma-chain (γ-c) cytokines IL-2, IL-7, and IL-15 resulted in the generation of memory T cells as well as CD25+ NKT cells and CD25+ NK cells. Adoptive cellular therapy (ACT) utilizing these reprogrammed immune cells protected FVBN202 mice from tumor challenge, and overcame the suppressive functions of myeloid-derived suppressor cells (MDSCs). We then demonstrated that the presence of CD25+ NKT cells was required for anti-tumor efficacy of T cells as well as their resistance to MDSCs. Similar results were obtained by reprogramming of peripheral blood mononuclear cells (PBMC) from patients with early stage breast cancer, demonstrating that an increased frequency of CD25+ NKT cells in reprogrammed immune cells was associated with modulation of MDSCs to CD11b-HLA-DR+ immune stimulatory cells. Here, we tested the efficacy of immunotherapy in a therapeutic setting against established primary breast cancer (Chapter One), experimental metastatic breast cancer (Chapter Three) as well as against minimal residual disease (MRD) in patients with multiple myeloma (Chapter Two). We evaluated the ability of reprogrammed immune cells, including CD25+ NKT cells, to convert MDSCs to myeloid immune stimulatory cells, in vivo; this resulted in the identification and characterization of a novel antigen presenting cell (APC). These novel immune stimulatory cells differed from conventional APCs, including dendritic cells (DCs) and macrophages. We have also demonstrated that enhancing immunogenicity of mammary tumors by treatment with Decitabine (Dec) along with overcoming MDSCs by utilizing reprogrammed T cells and NKT cells in ACT prolongs survival of animals, but fails to eliminate the tumor. However, targeting cancer during a setting of MDR, when tumor cells are dormant, results in objective responses as evidenced in our multiple myeloma studies. This suggests that targeting breast cancer with immunotherapy following conventional therapies, in a setting of residual disease when tumor cells are dormant, may be effective in eliminating such residual cells or maintaining dormancy and extending time-to-relapse for breast cancer patients

    Immunotherapy of Cancer: Reprogramming Tumor-Immune Crosstalk

    Get PDF
    The advancement of cancer immunotherapy faces barriers which limit its efficacy. These include weak immunogenicity of the tumor, as well as immunosuppressive mechanisms which prevent effective antitumor immune responses. Recent studies suggest that aberrant expression of cancer testis antigens (CTAs) can generate robust antitumor immune responses, which implicates CTAs as potential targets for immunotherapy. However, the heterogeneity of tumor cells in the presence and quantity of CTA expression results in tumor escape from CTA-specific immune responses. Thus, the ability to modulate the tumor cell epigenome to homogenously induce expression of such antigens will likely render the tumor more immunogenic. Additionally, emerging studies suggest that suppression of antitumor immune responses may be overcome by reprogramming innate and adaptive immune cells. Therefore, this paper discusses recent studies which address barriers to successful cancer immunotherapy and proposes a strategy of modulation of tumor-immune cell crosstalk to improve responses in carcinoma patients

    Tumor-reactive immune cells protect against metastatic tumor and induce immunoediting of indolent but not quiescent tumor cells

    Get PDF
    Two major barriers to cancer immunotherapy include tumor-induced immune suppression mediated by myeloid-derived suppressor cells and poor immunogenicity of the tumor-expressing self-antigens. To overcome these barriers, we reprogrammed tumor-immune cell cross-talk by combined use of decitabine and adoptive immunotherapy, containing tumor-sensitized T cells and CD25+ NKT cells. Decitabine functioned to induce the expression of highly immunogenic cancer testis antigens in the tumor, while also reducing the frequency of myeloid-derived suppressor cells and the presence of CD25+ NKT cells rendered T cells, resistant to remaining myeloid-derived suppressor cells. This combinatorial therapy significantly prolonged survival of animals bearing metastatic tumor cells. Adoptive immunotherapy also induced tumor immunoediting, resulting in tumor escape and associated disease-related mortality. To identify a tumor target that is incapable of escape from the immune response, we used dormant tumor cells. We used Adriamycin chemotherapy or radiation therapy, which simultaneously induce tumor cell death and tumor dormancy. Resultant dormant cells became refractory to additional doses of Adriamycin or radiation therapy, but they remained sensitive to tumor-reactive immune cells. Importantly, we discovered that dormant tumor cells contained indolent cells that expressed low levels of Ki67 and quiescent cells that were Ki67 negative. Whereas the former were prone to tumor immunoediting and escape, the latter did not demonstrate immunoediting. Our results suggest that immunotherapy could be highly effective against quiescent dormant tumor cells. The challenge is to develop combinatorial therapies that could establish a quiescent type of tumor dormancy, which would be the best target for immunotherapy

    Peripheral blood mononuclear cells of breast cancer patients can be reprogrammed to enhance anti-HER-2/neu reactivity and overcome myeloid-derived suppressor cells [poster abstract]

    Get PDF
    Barriers limiting the efficacy of adoptive cellular therapy (ACT) for breast cancer patients include immune suppression mediated by myeloid-derived suppressor cells (MDSC) and a low frequency of tumor-reactive memory T cells (Tm). Recently, we developed an ex vivo protocol to reprogram tumor-reactive murine splenocytes; these cells were found to be resistant to MDSC suppression and protected FVBN202 mice from tumor challenge. Here, we evaluated the clinical applicability of reprogramming tumor-sensitized PBMCs isolated from patients with early stage breast cancer by treatment with bryostatin 1 and ionomycin (B/I) combined with IL-2, IL-7 and IL-15. Our data demonstrate that reprogrammed cells are enriched with Tm cells (n=5; p=0.006), as well as activated CD56+(n=6; p=0.003) and CD161+ (n=4; p=0.02) NKT cells, and demonstrate expansion in total cell numbers (n=16; p=0.003) compared to baseline cells. Reprogrammed PBMCs displayed enhanced HER-2/neu-specific IFN-γ producing immune responses (n=6; p=0.04); non-reprogrammed control PBMC IFN-γ production was not significant (n=6; p=0.4). Furthermore, high-throughput sequencing analysis of the T cell receptor (TcR) Vβ in one patient demonstrated clonal expansion of specific TcR VJ recombination events resulting from cellular reprogramming, suggestive of an enriched frequency of specific tumor antigen-primed T cell clones. Interestingly, reprogrammed T cells were resistant to autologous CD33+ CD11b+ HLA-DRlo/- MDSCs, as determined by further enhanced HER-2/neu-specific IFN-γ secretion in the presence of MDSCs (n=6; p=0.03). Activated CD161+ NKT cells comprising 3% or greater of total reprogrammed cells rendered T cells resistant to MDSCs (n=3; p=0.02). Upregulation of NKG2D expression on CD161+(n=5; p=0.0006) and CD56+ (n=5; p=0.04) NKT cells resulted from cellular reprogramming. Therefore, NKG2D signaling was blocked using anti-NKG2D blocking antibody in our co-culture system, resulting in the abrogation of resistance to MDSCs as determined by blunted IFN-γ secretion (n=3; p=0.04). Finally, the phenotype of MDSCs after co-culture with reprogrammed PBMC was examined; we observed downregulation of CD11b expression (n=3; p=0.02) concomitant with HLA-DR upregulation on MDSCs (n=3; p=0.001); suggestive of induced maturation of MDSCs into Dendritic Cells (DC). The results of our study offer the following strategies to improve ACT of breast cancer: i) inclusion of activated NKT cells in ACT to overcome MDSC suppression by inducing MDSC maturation into DCs, and ii) PBMC reprogramming to enrich the frequency of tumor-reactive Tm cells

    Satb1 overexpression drives tumor-promoting activities in cancer-associated dendritic cells

    Get PDF
    Special AT-rich sequence-binding protein 1 (Satb1) governs genome-wide transcriptional programs. Using a conditional knockout mouse, we find that Satb1 is required for normal differentiation of conventional dendritic cells (DCs). Furthermore, Satb1 governs the differentiation of inflammatory DCs by regulating major histocompatibility complex class II (MHC II) expression through Notch1 signaling. Mechanistically, Satb1 binds to the Notch1 promoter, activating Notch expression and driving RBPJ occupancy of the H2-Ab1 promoter, which activates MHC II transcription. However, tumor-driven, unremitting expression of Satb1 in activated Zbtb46(+) inflammatory DCs that infiltrate ovarian tumors results in an immunosuppressive phenotype characterized by increased secretion of tumor-promoting Galectin-1 and IL-6. In vivo silencing of Satb1 in tumor-associated DCs reverses their tumorigenic activity and boosts protective immunity. Therefore, dynamic fluctuations in Satb1 expression govern the generation and immunostimulatory activity of steady-state and inflammatory DCs, but continuous Satb1 overexpression in differentiated DCs converts them into tolerogenic/pro-inflammatory cells that contribute to malignant progression.Fil: Tesone, Amelia J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Rutkowski, Melanie R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Brencicova, Eva. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Svoronos, Nikolaos. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Perales Puchal, Alfredo. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Stephen, Tom L.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Allegrezza, Michael J.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Payne, Kyle K.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Nguyen, Jenny M.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados UnidosFil: Wickramasinghe, Jayamanna. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Tchou, Julia. University of Pennsylvania; Estados UnidosFil: Borowsky, Mark E.. Christiana Care Health System. Helen F. Graham Cancer Center; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute. Center for Systems and Computational Biology; Estados UnidosFil: Conejo Garcia, José R.. The Wistar Institute. Tumor Microenvironment and Metastasis Program; Estados Unido

    Tumor escape and progression of HER-2/neu negative breast cancer under immune pressure

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Emerging data from pre-clinical and clinical studies suggest that HER-2/neu-specific T cell responses could induce HER-2/neu antigen loss in the tumor cells. These data suggest that patients with HER-2/neu negative breast cancer might have had HER-2/neu positive premalignant lesions in the past that progressed to HER-2/neu negative breast cancer under HER-2/neu-specific immune pressure.</p> <p>Methods</p> <p>We conducted a pilot study in patients with HER-2/neu positive and HER-2/neu negative breast cancers as well as a patient with ductal carcinoma in situ (DCIS). HER-2/neu expression was determined by FISH. HER-2/neu-specific T cell responses were determined by using IFN-γ ELISA. Expression of IFN-γ Rα in the tumors was determined by immunohistochemistry analysis of paraffin-embedded tissues.</p> <p>Results</p> <p>We determined that majority of (10 of 12) patients with HER-2/neu negative breast cancer had HER-2/neu-specific IFN-γ producing T cell responses which was stronger than those in patients with HER-2/neu positive tumors. Such immune responses were associated with nuclear translocation of IFN-γ Rα in their tumor cells. Patient with DCIS also showed HER-2/neu-specific T cell responses.</p> <p>Conclusion</p> <p>These data suggest that conducting retrospective studies in patients with HER-2/neu negative breast cancers and prospective studies in patients with HER-2/neu positive DCIS can determine whether HER-2/neu negative invasive carcinomas arise from HER-2/neu positive DCIS under the immune pressure.</p

    IFN-γ Rα Is a Key Determinant of CD8+ T Cell-Mediated Tumor Elimination or Tumor Escape and Relapse in FVB Mouse

    Get PDF
    During the past decade, the dual function of the immune system in tumor inhibition and tumor progression has become appreciated. We have previously reported that neu-specific T cells can induce rejection of neu positive mouse mammary carcinoma (MMC) and also facilitate tumor relapse by inducing neu antigen loss and epithelial to mesenchymal transition (EMT). Here, we sought to determine the mechanism by which CD8+ T cells either eliminate the tumor, or maintain tumor cells in a dormant state and eventually facilitate tumor relapse. We show that tumor cells that express high levels of IFN-γ Rα are eliminated by CD8+ T cells. In contrast, tumor cells that express low levels of IFN-γ Rα do not die but remain dormant and quiescent in the presence of IFN-γ producing CD8+ T cells until they hide themselves from the adaptive immune system by losing the tumor antigen, neu. Relapsed tumor cells show CD44+CD24- phenotype with higher rates of tumorigenesis, in vivo. Acquisition of CD44+CD24- phenotype in relapsed tumors was not solely due to Darwinian selection. Our data suggest that tumor cells control the outcome of tumor immune surveillance through modulation of the expression of IFN-γ Rα

    IRE1α–XBP1 controls T cell function in ovarian cancer by regulating mitochondrial activity

    Get PDF
    Tumours evade immune control by creating hostile microenvironments that perturb T cell metabolism and effector function 1?4 . However, it remains unclear how intra-tumoral T cells integrate and interpret metabolic stress signals. Here we report that ovarian cancer?an aggressive malignancy that is refractory to standard treatments and current immunotherapies 5?8 ?induces endoplasmic reticulum stress and activates the IRE1α?XBP1 arm of the unfolded protein response 9,10 in T cells to control their mitochondrial respiration and anti-tumour function. In T cells isolated from specimens collected from patients with ovarian cancer, upregulation of XBP1 was associated with decreased infiltration of T cells into tumours and with reduced IFNG mRNA expression. Malignant ascites fluid obtained from patients with ovarian cancer inhibited glucose uptake and caused N-linked protein glycosylation defects in T cells, which triggered IRE1α?XBP1 activation that suppressed mitochondrial activity and IFNγ production. Mechanistically, induction of XBP1 regulated the abundance of glutamine carriers and thus limited the influx of glutamine that is necessary to sustain mitochondrial respiration in T cells under glucose-deprived conditions. Restoring N-linked protein glycosylation, abrogating IRE1α?XBP1 activation or enforcing expression of glutamine transporters enhanced mitochondrial respiration in human T cells exposed to ovarian cancer ascites. XBP1-deficient T cells in the metastatic ovarian cancer milieu exhibited global transcriptional reprogramming and improved effector capacity. Accordingly, mice that bear ovarian cancer and lack XBP1 selectively in T cells demonstrate superior anti-tumour immunity, delayed malignant progression and increased overall survival. Controlling endoplasmic reticulum stress or targeting IRE1α?XBP1 signalling may help to restore the metabolic fitness and anti-tumour capacity of T cells in cancer hosts.Fil: Song, Minkyung. Weill Cornell Medicine; Estados UnidosFil: Sandoval, Tito A.. Weill Cornell Medicine; Estados UnidosFil: Chae, Chang-Suk. Weill Cornell Medicine; Estados UnidosFil: Chopra, Sahil. Weill Cornell Medicine; Estados UnidosFil: Tan, Chen. Weill Cornell Medicine; Estados UnidosFil: Rutkowski, Melanie R.. University of Virginia; Estados UnidosFil: Raundhal, Mahesh. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Chaurio, Ricardo A.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Payne, Kyle K.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Konrad, Csaba. Weill Cornell Medicine; Estados UnidosFil: Bettigole, Sarah E.. Quentis Therapeutics Inc.; Estados UnidosFil: Shin, Hee Rae. Quentis Therapeutics Inc.; Estados UnidosFil: Crowley, Michael J. P.. Weill Cornell Graduate School of Medical Sciences; Estados UnidosFil: Cerliani, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Kossenkov, Andrew V.. The Wistar Institute; Estados UnidosFil: Motorykin, Ievgen. Weill Cornell Medicine,; Estados UnidosFil: Zhang, Sheng. Weill Cornell Medicine,; Estados UnidosFil: Manfredi, Giovanni. Weill Cornell Medicine,; Estados UnidosFil: Zamarin, Dmitriy. Memorial Sloan Kettering Cancer Center; Estados UnidosFil: Holcomb, Kevin. Weill Cornell Medicine,; Estados UnidosFil: Rodriguez, Paulo C.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Rabinovich, Gabriel Adrián. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Biológica; ArgentinaFil: Conejo Garcia, Jose R.. H. Lee Moffitt Cancer Center & Research Institute; Estados UnidosFil: Glimcher, Laurie H.. Dana Farber Cancer Institute; Estados Unidos. Harvard Medical School; Estados UnidosFil: Cubillos-Ruiz, Juan R.. Weill Graduate School Of Medical Sciences; Estados Unidos. Weill Graduate School Of Medical Sciences; Estados Unido

    Integrative genomic analysis implicates limited peripheral adipose storage capacity in the pathogenesis of human insulin resistance.

    Get PDF
    Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the mechanisms underlying this link remain obscure. Using an integrative genomic approach, we identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting insulin levels adjusted for BMI, lower HDL cholesterol levels and higher triglyceride levels) and provide evidence that their link with higher cardiometabolic risk is underpinned by an association with lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic contribution to familial partial lipodystrophy type 1, a severe form of insulin resistance, and highlight shared molecular mechanisms in common/mild and rare/severe insulin resistance. Population-level genetic analyses combined with experiments in cellular models implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognized molecules influencing adipocyte differentiation. Our findings support the notion that limited storage capacity of peripheral adipose tissue is an important etiological component in insulin-resistant cardiometabolic disease and highlight genes and mechanisms underpinning this link.This study was funded by the UK Medical Research Council through grants MC_UU_12015/1, MC_PC_13046, MC_PC_13048 and MR/L00002/1. This work was supported by the MRC Metabolic Diseases Unit (MC_UU_12012/5) and the Cambridge NIHR Biomedical Research Centre and EU/EFPIA Innovative Medicines Initiative Joint Undertaking (EMIF grant 115372). Funding for the InterAct project was provided by the EU FP6 program (grant LSHM_CT_2006_037197). This work was funded, in part, through an EFSD Rising Star award to R.A.S. supported by Novo Nordisk. D.B.S. is supported by Wellcome Trust grant 107064. M.I.M. is a Wellcome Trust Senior Investigator and is supported by the following grants from the Wellcome Trust: 090532 and 098381. M.v.d.B. is supported by a Novo Nordisk postdoctoral fellowship run in partnership with the University of Oxford. I.B. is supported by Wellcome Trust grant WT098051. S.O'R. acknowledges funding from the Wellcome Trust (Wellcome Trust Senior Investigator Award 095515/Z/11/Z and Wellcome Trust Strategic Award 100574/Z/12/Z)
    corecore