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2 
 

Abstract 1 
 2 
 Insulin resistance is a key mediator of obesity-related cardiometabolic disease, yet the 3 

mechanisms underlying this link remain obscure. Using an integrative genomic approach, we 4 

identify 53 genomic regions associated with insulin resistance phenotypes (higher fasting 5 

insulin adjusted for BMI, lower HDL cholesterol and higher triglycerides) and provide 6 

evidence that their link with higher cardiometabolic risk is underpinned by an association with 7 

lower adipose mass in peripheral compartments. Using these 53 loci, we show a polygenic 8 

contribution to familial partial lipodystrophy-type 1, a severe form of insulin resistance, and 9 

highlight shared molecular mechanisms between common/mild and rare/severe insulin 10 

resistance. Population-level genetic analyses combined with experiments in cellular models 11 

implicate CCDC92, DNAH10 and L3MBTL3 as previously unrecognised molecules 12 

influencing adipocyte differentiation. Our findings support the notion that limited storage 13 

capacity of peripheral adipose tissue is an important aetiological component in insulin-resistant 14 

cardiometabolic disease and highlight genes and mechanisms underpinning this link. 15 



3 
 

Introduction 1 
 2 
 Insulin resistance, usually defined as an impaired ability of insulin to maintain normal 3 

glucose metabolism and initially manifested by higher levels of circulating insulin, is positively 4 

associated with adiposity and is a key mediator of the link between obesity and its adverse 5 

impact on metabolic and cardiovascular disease.1-8 Given the current global epidemic of 6 

metabolic disease, there is an urgent need for improved understanding of the mechanisms that 7 

link over-nutrition to insulin resistance in the general population.7-10  8 

 Among individuals stratified on the basis of overall adiposity, there is considerable 9 

variation in the extent of adverse metabolic sequelae,11 demonstrating the importance of other 10 

factors in the aetiology of insulin resistance and its complications. Indeed, while insulin 11 

resistance often coexists with obesity, severe forms of insulin resistance develop without 12 

obesity or in association with generalized or regional lack of adipose tissue, i.e. 13 

lipodystrophy.12 In lipodystrophies,13 it has been proposed that the impaired capacity of 14 

peripheral adipose tissue to expand under the challenge of a positive energy balance leads to 15 

lipid accumulation at ectopic sites (e.g. liver, skeletal muscle, pancreas) and eventually to overt 16 

diabetes.12,14 The notion of “adipose overflow” or “limited adipose tissue expandability”15-19 is 17 

supported (i) by the metabolic disturbances seen in rare, monogenic lipodystrophies and their 18 

dramatic amelioration in response to dietary calorie restriction20 or leptin replacement,21,22 and 19 

(ii) by a series of elegant rodent studies including those in which adipose tissue capacity was 20 

expanded by fat transplantation in lipodystrophic mice23 or by over-expressing adiponectin,24 21 

or where partially lipodystrophic mice were energetically challenged by rendering them leptin 22 

deficient.25,26 However, the relevance of this model to the general population remains uncertain. 23 

 Some initial human genetic insights into more prevalent forms of insulin resistance are 24 

available. Genome-wide studies of gold-standard measures of insulin resistance have been 25 

limited by sample size,27 but multiple genomic loci have been associated with fasting insulin 26 
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levels, a widely-measured marker of insulin resistance.28,29 A subset of these loci were 1 

associated with higher triglycerides and lower high-density lipoprotein (HDL) cholesterol,28 2 

which are hallmarks of insulin resistance.13,30 These loci were later validated for their 3 

association with insulin resistance,31 suggesting that the combined association with this triad 4 

of phenotypes could help identify specific genetic determinants of insulin resistance.  5 

 Given the availability of large-scale genome-wide association data on lipid traits and 6 

fasting insulin,28,29,32 we undertook an integrative genomic approach to characterise genetic and 7 

molecular mechanisms underpinning insulin resistance at a given level of adiposity and its role 8 

in cardiometabolic disease in the general population.  9 



5 
 

Results 1 

Associations with insulin resistance phenotypes at 53 independent genomic regions 2 

 We combined genome-wide association results for fasting insulin adjusted for body mass 3 

index,22,23 HDL-cholesterol and triglyceride levels32 from up to 188,577 individuals to identify 4 

loci associated with a phenotypic pattern indicative of insulin resistance (Online Methods, 5 

Supplementary Figures 1-2 and Supplementary Table 1). After aligning the association 6 

results of ~2.4 million single nucleotide polymorphisms (SNPs) to the insulin-raising allele, 7 

630 SNPs from 53 1Mb-genomic regions were associated with higher fasting insulin, higher 8 

triglycerides and lower HDL-cholesterol (p<0.005 for each phenotype, expected probability of 9 

association under null hypothesis p=3.1 x 10-08; Online Methods, Supplementary Figures 3-10 

4). These 53 genomic regions included 10 loci previously implicated in insulin resistance,31 11 

and an additional 43 loci (Supplementary Table 2). A subset of 25 of the 53 loci had 12 

previously been associated with HDL cholesterol or triglyceride levels at genome-wide 13 

significance,32 while 28 had not (Supplementary Table 2). We first investigated the 14 

associations of these loci in a completely independent sample of 6,101 individuals and found 15 

that genetic risk scores comprising the 53 lead SNPs were strongly associated with higher 16 

fasting insulin, higher triglycerides and lower HDL-cholesterol (Supplementary Figure 5). 17 

We next asked whether these variants were associated with “gold-standard” measures of insulin 18 

sensitivity. Having a greater number of risk-alleles from the 53-SNP, 43-SNP or 28-SNP 19 

(excluding loci previously implicated in insulin resistance and lipid traits, respectively) genetic 20 

scores was strongly associated with (a) lower insulin sensitivity measured by euglycemic clamp 21 

or insulin suppression test in 2,764 individuals27 (p-value for 53-SNP genetic score = 4.3 x 10-22 

06; Table 1) and (b) lower insulin sensitivity index in 4,769 individuals with a frequently-23 

sampled oral glucose tolerance test33 (p-value for 53-SNP genetic score = 7.3 x 10-10; Table 24 

1).  25 
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Genetic predisposition to insulin resistance via the 53 loci confers higher risk of 1 

cardiometabolic disease but lower levels of peripheral adiposity 2 

 We next investigated associations of the 53 genomic regions with a range of continuous 3 

metabolic traits and disease outcomes. In 45,836 cases and 230,358 controls, the 53-SNP 4 

genetic score was associated with a higher risk of type 2 diabetes (odds ratio [OR] per standard 5 

deviation [SD] of the genetic score [i.e. ~4.5 alleles], 1.12; 95% confidence interval [CI], 1.11-6 

1.14; p=9.2 x 10-61; Table 1). In studies with available individual-level data, we saw no 7 

difference in associations across sex or body mass index (BMI) strata (Supplementary Table 8 

3). Genetically-predicted insulin resistance was also associated with a higher risk of coronary 9 

heart disease (Table 1). The associations with type 2 diabetes (OR, 1.10; p=9.0 x 10-32) and 10 

coronary heart disease (OR, 1.04; p=9.7 x 10-07) remained after removing 13 loci that were 11 

previously shown to be associated with either of the two diseases at genome-wide 12 

significance.34,35 Association estimates were also consistent after removing the 25 loci 13 

previously associated with HDL cholesterol or triglyceride levels at genome-wide significance 14 

(Table 1). We also observed an association with coronary heart disease in 5,369 cases of 15 

coronary heart disease and 106,969 controls from the UK Biobank study not previously 16 

included in genome-wide discovery analyses of insulin or lipid traits (OR, 1.09; p=5.3 x 10-09). 17 

Individually, 30 of the 53 lead SNPs were associated with higher type 2 diabetes risk (p<0.05; 18 

Supplementary Table 4), including a novel association at genome-wide significance for 19 

rs718314 near ITPR2 (OR per allele, 1.06; p=6.8 x 10-09). We found an enrichment of loci 20 

associated with higher risk of both type 2 diabetes and coronary heart disease, including those 21 

encompassing the proximal insulin signalling INSR, IRS1 and PIK3R1 genes (11/53 loci 22 

associated with both diseases at p<0.05; two-tailed binomial probability of observing this 23 

proportion of loci by chance p=8.5 x 10-22; Supplementary Table 5).  24 
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 While insulin resistance is often considered secondary to higher adiposity, at the 53 loci 1 

we observed associations with lower body fat percentage, BMI and hip circumference (Figure 2 

1A, Supplementary Figures 6 and 7). The larger magnitude of association with measures of 3 

body fat rather than with glycaemic phenotypes is consistent with a primary effect of many 4 

variants on adipose tissue mass (Figure 1A, Supplementary Figures 6 and 7).  5 

 By follow-up studies using dual-energy X-ray absorptiometry (DEXA) measures in 6 

12,848 individuals, we found that the most marked association of the genetic score was with 7 

lower levels of gynoid and leg fat mass (Figure 1B). Individuals in the highest quintile of the 8 

53-SNP genetic score had an average of 712 grams less leg fat mass compared to individuals 9 

in the bottom quintile (Figure 1C), which accounted for the majority of the overall body fat 10 

association (Supplementary Figure 8). The association with lower levels of leg fat was 11 

accompanied by a higher hazard of incident type 2 diabetes (Figure 1C). In 9,150 participants 12 

from the EPIC-Norfolk cohort who gained weight during a median follow-up of 3.7 years, 13 

carrying a greater number of the 53 risk alleles was inversely associated with change in hip 14 

circumference, adjusted for the amount of weight gained (i.e. individuals carrying more alleles 15 

were less likely to deposit extra mass in their gluteal region for a given increase in body mass; 16 

β in cm of hip circumference per SD of genetic score, -0.07; p=0.027; Supplementary Note). 17 

Overall, these association analyses suggest that individuals genetically predisposed to insulin 18 

resistance via the 53 loci have a relative inability to expand their peripheral fat compartment 19 

when challenged by a positive energy balance and that this incapacity results in higher 20 

cardiometabolic disease risk. We also found that the 53-SNP genetic score was associated with 21 

higher levels of alanine aminotransferase and gamma-glutamyl transferase (Supplementary 22 

Table 6), which suggests that the failure to store lipid in gluteofemoral adipose tissue may be 23 

accompanied by hepatic lipid deposition. 24 
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 The 53-SNP genetic score was associated with greater waist circumference (Figure 1A), 1 

but not with trunk adipose tissue (Figure 1B), indicating that the association with body fat 2 

distribution and cardiometabolic disease was largely driven by the association with lower levels 3 

of peripheral adipose tissue (Figure 1 and Supplementary Figures 6-8). Among the 53 lead 4 

SNPs, 17 were within 500kb of a waist-to-hip ratio (WHR) associated SNP36 (Supplementary 5 

Figure 6). Consistent with DEXA analyses, the associations with WHR at this subset of 6 

overlapping loci were largely driven by an association with lower hip circumference, rather 7 

than higher waist circumference (Supplementary Figure 6 and Supplementary Table 4).   8 

 Our large-scale meta-analyses allowed the investigation of individual-SNP associations 9 

with both adiposity and metabolic risk. At eight of the 53 loci, the lead SNP was associated 10 

with lower total body fat percentage or hip circumference at genome-wide significance (p<5 x 11 

10-08), including a novel association of the insulin-raising G allele of rs4976033 near PIK3R1 12 

with lower body fat percentage (p=3.0 x 10-09; see Figure 1D and Supplementary Figure 9). 13 

Seven of the eight adiposity-lowering alleles at these loci were associated with a higher risk of 14 

type 2 diabetes (p<0.05; Figure 1D). 15 

 16 

Role of common variants in the genetic basis of a severe form of lipodystrophy 17 

 Given the strong association with insulin resistance but lower levels of peripheral 18 

adiposity, we hypothesized that the polygenic predisposition to insulin resistance imparted by 19 

the 53 loci might contribute to the pathogenesis of familial partial lipodystrophy-type 1 20 

(FPLD1). When compared to women from the population-based Fenland study, women 21 

diagnosed with FPLD1 displayed markedly lower levels of leg fat mass for a given fat mass in 22 

the rest of the body (Figure 2A). Whilst the name of the condition implies Mendelian 23 

inheritance, using exome sequencing in 9 FPLD1 cases we did not identify likely candidate 24 

causal genes (Online Methods and Supplementary Table 7). When compared with 5,296 25 
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unrelated women from the UKHLS study in a case-control analysis, 37 patients with FPLD1 1 

had a higher burden of the 53 risk alleles (OR per SD of genetic score in logistic regression 2 

analyses adjusted for age and the first 10 genetic principal components, 1.70; 95% CI, 1.21-3 

2.39; p=0.0021, Figure 2B; ppermutation=0.0020, see  Online Methods). Also, the phenotypes 4 

observed in FPLD1 patients in comparison to obese women from the Fenland study mirrored 5 

the association pattern of the 53-SNP genetic score (Supplementary Table 8). FPLD1 women 6 

had a more severe leg fat phenotype compared to that expected from the relationship between 7 

the 53 SNP score and leg fat mass in the Fenland study (Figure 2C), suggesting that additional 8 

genetic and environmental factors contribute to determining this extreme phenotype.  9 

 10 

Prioritisation of putative effector genes, cell-types and tissues 11 

 We prioritised putative effector genes at the 53 loci by integrating data about physical 12 

proximity, expression quantitative trait locus (eQTL) mapping, functional annotation and 13 

previous knowledge about genes causing monogenic forms of insulin resistance (summarised 14 

in Supplementary Table 2; see also Supplementary Tables 9-11 for details). Putative 15 

effector genes included five with well-established roles in proximal insulin signalling 16 

(Supplementary Table 2 and Figure 3A). Other candidates included LPL, encoding the key 17 

lipolysis regulator lipoprotein lipase (Supplementary Table 2 and Figure 3B). The insulin-18 

lowering, minor allele of rs1011685 (near LPL) is on the same haplotype (r2=1) as a gain-of-19 

function,37 protein-truncating allele in LPL (p.Ser447*; rs328; minor-allele frequency [MAF], 20 

9.9%). The p.Ser447* gain-of-function variant was recently reported to be associated with 21 

lower risk of coronary heart disease,38 while an independent loss-of-function missense variant 22 

of LPL39 (p.Asp36Asn; rs1801177; MAF, 1.9%) was associated with higher risk.38 Here, we 23 

found that the p.Ser447* gain-of-function variant is associated with greater insulin sensitivity, 24 

lower fasting glucose, lower levels of liver markers and protection from type 2 diabetes (OR 25 
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per allele, 0.93; p=1.6 x 10-05; Figure 3B and Supplementary Figure 10). Conversely, the 1 

p.Asp36Asn loss-of-function variant in LPL is associated with a higher risk of type 2 diabetes 2 

(OR per allele, 1.11; p=0.0086; Figure 3B and Supplementary Figure 10). Thus, recent 3 

findings of an allelic series of LPL variants implicating lipoprotein lipase as a putative 4 

therapeutic target in heart disease38 are now complemented by a directionally consistent 5 

observation for type 2 diabetes, compatible with a role for impaired lipoprotein lipase-mediated 6 

lipolysis in insulin resistance and type 2 diabetes.  7 

 Among the 53 loci, three contained genes at which rare mutations have been previously 8 

implicated in severe monogenic forms of insulin resistance (i.e. PPARG, PIK3R1, INSR; 9 

Figure 3C), which is more than what expected by chance given the prevalence of monogenic 10 

insulin resistance genes in the genome (observed percentage 0.54% [3 out of a total of 553 11 

genes in the 53 loci], expected percentage 0.064%, two-tailed binomial p=0.0056). The PIK3R1 12 

gene encodes regulatory subunits of a critical kinase involved in proximal insulin signalling 13 

and rare, loss-of-function mutations in this gene are associated with SHORT syndrome, a 14 

dysmorphic condition characterised by short stature, partial lipodystrophy and insulin 15 

resistance.40-43 To date, such mutations have been identified in few families worldwide and 16 

data from Exome Aggregation Consortium show this gene to have decreased tolerance of 17 

missense variation (Z=2.42) and to be particularly intolerant of loss-of-function mutations 18 

(pLI=1; Exome Aggregation Consortium, Cambridge, MA, URL: 19 

http://exac.broadinstitute.org accessed 22nd March 2016). Here, we provide evidence that a 20 

common variant near PIK3R1, which accounts for almost half of all alleles in the general 21 

population (MAF=49%), is associated with subtle effects on insulin resistance, lower body fat 22 

percentage, higher risk of type 2 diabetes and coronary heart disease (Supplementary Figure 23 

9). This association pattern partially overlaps with that reported for PIK3R1 mutations and 24 

SHORT syndrome (Supplementary Table 12). We also found that the common rs8101064 25 
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allele T in INSR, encoding the insulin receptor, was associated with insulin resistance and 1 

higher risk of type 2 diabetes (OR per allele, 1.08; p=0.020), but not with body fat percentage 2 

(p=0.16), consistent with the fact that patients with heterozygous loss-of-function mutations in 3 

the INSR are frequently insulin resistant but are not commonly lipodystrophic.13 4 

 We assessed the overlap of lead SNPs and their proxies (r2>0.8) with functional 5 

regulatory annotations across 98 cell types from the NIH Epigenome Roadmap (Online 6 

Methods) and, consistent with phenotypic associations, identified substantial overlap with 7 

adipose tissue active enhancer elements (31 of 53 loci overlapped adipose tissue active 8 

enhancer elements; observed percentage=58.4% of loci, expected=30.1%, binomial p=2.1 x 9 

10-05; Online Methods and Figure 3D). Furthermore, combined pathway analyses with 10 

integration of large-scale gene expression data44 implicated adipocytes as likely effector cell-11 

type underlying observed associations (Figure 3E). In subcutaneous adipocyte eQTL data from 12 

1,064 individuals of the EUROBATS and GTex projects (Online Methods and 13 

Supplementary Table 10), we observed evidence of eQTL associations with nearby genes 14 

(p<10-06) at 21 loci including 14 with supportive evidence of co-localisation of lead phenotypic 15 

and eQTL associations (Online Methods and Supplementary Table 10). 16 

 17 

Experimental validation of putative effector genes in cellular adipogenesis models 18 

 We sought to experimentally validate the role of five putative effector genes (IRS1, 19 

CCDC92, DNAH10, L3MBTL3 and FAM13A) across four loci which showed associations with 20 

(a) expression of nearby transcripts in subcutaneous adipocytes, (b) lower peripheral adiposity 21 

and (c) higher metabolic disease risk (Supplementary Note, Supplementary Figure 11, 22 

Supplementary Tables 10 and 13). We used short interfering RNA (siRNA) to reduce mRNA 23 

levels for these five genes in OP9-K cells, an adipocyte model which shows rapid 24 

differentiation in response to adipogenic stimuli.45 Knockdown of the IRS1, CCDC92, 25 
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DNAH10 and L3MBTL3 genes significantly reduced both mRNA of the target gene (Figure 1 

4A top graph) and lipid accumulation (Figure 4A bottom graph and Figure 4B). These results 2 

were directionally consistent with the association of the insulin-raising alleles at these loci with 3 

lower expression of these genes in subcutaneous adipocytes and with lower levels of peripheral 4 

fat (Figure 4C). Knockdown of FAM13A reduced mRNA (Figure 4A top graph), but did not 5 

significantly affect pre-adipocyte lipid accumulation (Figure 4A bottom graph and Figure 4B). 6 

In contrast to the other four genes, the risk allele at FAM13A was associated with higher mRNA 7 

expression of this gene in subcutaneous adipocytes (Figure 4C).   8 
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Discussion 1 

 Our data implicate the impaired capacity to adequately expand the peripheral adipose 2 

tissue compartments in human insulin resistance and related disease at the population level. 3 

These results substantially augment existing evidence31,36,46-49 by clarifying the extent and 4 

relevance of adipose tissue dysfunction to cardiometabolic disease and by providing novel 5 

mechanistic insights into its underpinning biology. 6 

 Our results are consistent with the existence of dozens of genomic regions at which 7 

common genetic variation affects cardiometabolic disease risk via subtle “lipodystrophy-like” 8 

mechanisms. While these common genetic mechanisms have individually small effects, their 9 

cumulative effect is large and relevant to a large fraction of the population. For instance, we 10 

observed ~700 grams difference in leg fat mass between the top and bottom 20% of the 11 

population distribution of risk alleles. We also show a polygenic contribution to an extreme 12 

phenotype, referred to as FPLD1 or Köbberling-type lipodystrophy, illustrating the 13 

contribution of common alleles to severe forms of insulin resistance. At given loci (e.g. 14 

PIK3R1), we found that genetic variants at the two extremes of the allele frequency spectrum 15 

result in corresponding consequences at the extremes of the phenotypic severity spectrum. 16 

These findings strongly concur with the notion that molecular and pathophysiologic 17 

mechanisms first described in severe forms of lipodystrophic insulin resistance are relevant to 18 

the general population. While a centripetal distribution of body fat is a well-recognised risk 19 

factor for metabolic and cardiovascular disease,50-54 there is considerable confusion about the 20 

underlying mechanisms and relative importance of lower peripheral fat versus higher central 21 

adiposity. Whilst supportive of a role for central fat accumulation, different lines of evidence 22 

from this study suggest a role for impaired peripheral fat deposition in insulin-resistant 23 

cardiometabolic disease in the general population. These include strong associations with 24 

gluteo-femoral adiposity, overlap with regulatory regions in adipose tissue and with genomic 25 
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loci known to cause lipodystrophies, as well as functional characterisation in adipocytes. These 1 

findings provide evidence from large-scale human genetics studies which add to a body of 2 

research about the links between subcutaneous and lower-body adipocyte phenotypes and a 3 

favourable metabolic profile.19,55-57   4 

 By combining population-scale association studies with eQTL data from adipose tissue 5 

and experimental evidence from murine cellular models, we provide evidence that specific risk 6 

loci influence adipose gene expression resulting in impaired adipogenesis, reduced peripheral 7 

fat depots and ultimately increased cardiometabolic disease risk. For the L3MBTL3, DNAH10 8 

or CCDC92 genes, evidence presented in this study provides the first link with impaired 9 

adipocyte differentiation capacity. L3MBTL3 recognises methylated lysine residues on histone 10 

tails58 and previous genome-wide anthropometric studies have implicated this locus in adult 11 

height and length at birth.59-61 At the chromosome 12q24 locus, our analyses are consistent 12 

with the implication of both CCDC92 and DNAH10 in impaired adipogenesis. CCDC92 is a 13 

coiled coil domain protein which interacts with proteins in the centriole/ciliary interface.62 14 

DNAH10 encodes one of the heavy chains of the dynein arms of the motile cilia and it is, 15 

therefore, surprising that its product appears to have cell autonomous effects on adipocyte 16 

biology. However, an essential splice site mutation in DNAH10 has previously been reported 17 

to co-segregate with abnormal circulating HDL-cholesterol levels in a family,63 while the locus 18 

containing both CCDC92 and DNAH10 has been associated with circulating levels of large 19 

HDL particles,64 further supporting an unexpected role for these proteins in metabolism. 20 

 Our results have preventive and therapeutic implications for cardiovascular and metabolic 21 

disease. First, they suggest that attempts to develop pharmacological agents acting on the 22 

molecular mechanisms of obesity are likely to reduce cardiometabolic risk if they reduce 23 

calorie intake (e.g. by acting on appetite) or reduce ectopic fat deposition in tissues such as the 24 

liver, muscle and pancreas, but not if they impair adipogenesis or peripheral fat deposition. 25 
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Agents that promote adipocyte differentiation and increase peripheral adipose mass via action 1 

on the peroxisome proliferator-activated receptor gamma have powerful antidiabetic 2 

actions,65,66 and in some cases have a beneficial effect on cardiovascular outcomes,67,68 3 

although some of these agents have been reported to have an adverse cardiovascular safety 4 

profile.69 An early but vital challenge in the translation of genetic findings towards therapeutic 5 

insight is the ability to identify likely effector transcripts underlying genetic associations. In 6 

the current study, we identify putative effectors of genetic associations and the tissues in which 7 

they operate. We also demonstrate that these genetic variants often affect the risk of type 2 8 

diabetes and coronary disease in a consistent direction, which suggests that targeting these 9 

pathways may satisfy current regulatory requirements that anti-diabetic agents should not be 10 

associated with unacceptable cardiovascular risk.70 This is particularly true of findings from 11 

both gain- and loss-of-function variants in the LPL gene and risk of type 2 diabetes, which are 12 

directionally consistent with those previously reported for the same mutations and risk of heart 13 

disease.38 Notably, the directional concordance for risk of heart disease and type 2 diabetes is 14 

in contrast to genetic evidence for other lipid-lowering agents (e.g. cholesterol-lowering 15 

variants near the molecular target of statins).71 In the context of a growing body of evidence 16 

linking lipolysis and heart disease risk,38,72-75 these data suggest that enhancing lipoprotein 17 

lipase activity may also become a viable preventive or therapeutic strategy in type 2 diabetes.  18 

 In interpreting the results of this study, it is important to note that combining multiple 19 

genetic-association analyses to gain insights about a latent unmeasured phenotype (i.e. insulin 20 

resistance) is not immediately comparable with a univariate genome-wide association study of 21 

a trait (e.g. fasting insulin). However, we validated these genetic variants as being strongly 22 

associated with “gold-standard” measures of insulin sensitivity, with multiple insulin-23 

resistance related diseases, including a severe form of insulin-resistant partial lipodystrophy, 24 

and showed overlap with monogenic insulin resistance genes. Thus, approaches to leverage 25 
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additional sources of evidence to prioritise genomic variation (such as multiple phenotypes or 1 

putative functional class76) represent a powerful use of extant genetic association results to 2 

advance understanding of biology previously intractable to conventional strategies.   3 

 Our results were based on genome-wide analyses of fasting insulin adjusted for BMI,28,29 4 

and we did not identify loci with a primary effect on higher adiposity and secondary association 5 

with insulin resistance (e.g. FTO). Our approach was more likely to identify loci influencing 6 

insulin resistance at a given level of adiposity. Prompted by the strong association pattern of 7 

the genetic scores and variants, we focused on evaluation of mechanisms linking lower levels 8 

of peripheral adiposity with insulin resistance. The importance of adipose function as a 9 

prominent driver of common insulin resistance is highlighted by the observation that half of all 10 

variants associated with fasting insulin at genome-wide significance (without adjustment for 11 

BMI) in a previous study28 were included in our genetic score. However, our results do not 12 

preclude the presence nor diminish the importance of other mechanisms underlying insulin 13 

resistance.5,77 Indeed, the associations we observe of the genetic score with central fat, visceral 14 

fat and liver enzymes would be further strengthened after adjustment for overall adiposity. 15 

While we conclude that our findings implicate a primary effect on impaired adipose function 16 

and a secondary effect on insulin resistance, we cannot entirely exclude the possibility of the 17 

reverse, nor that there are pleiotropic contributions to the associations.  18 

 19 
  20 
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Conclusions 1 
 2 
 Collectively, our findings support the notion that limited capacity of peripheral adipose 3 

tissue to store surplus energy is implicated in human insulin resistance and related 4 

cardiometabolic disease in the general population. Furthermore, we highlight putative effector 5 

genes, tissues and mechanisms underpinning this link.  6 

  7 
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Figure Legends 1 
 2 
Figure 1. Combined associations with detailed anthropometry and metabolic disease risk at the 53 genomic 3 
loci. Panel A: association of the 53-SNP genetic score with anthropometric and glycaemic traits in meta-analyses 4 
of genetic association studies. Body mass index (BMI), waist-to-hip ratio (WHR), waist and hip circumference 5 
data are from the GIANT consortium and the UK Biobank study. Body fat percentage data are from the UK 6 
Biobank, EPIC-Norfolk and Fenland studies. Fasting plasma glucose (FPG), 2 hour glucose and HbA1c data are 7 
from the MAGIC consortium. Squares with error bars represent the per-allele beta coefficients in standard 8 
deviation units and their 95% confidence intervals. Panel B: association of genetic scores with compartmental 9 
body masses. Data are from 12,848 participants of the Fenland and EPIC-Norfolk studies who underwent a DEXA 10 
scan. Squares with error bars represent the per-allele beta coefficients in standard deviation units and their 95% 11 
confidence intervals. Panel C: association with lower levels of leg fat mass and higher hazard of incident type 2 12 
diabetes by quintiles of the 53-SNP genetic risk scores. Associations are reported for individuals in the exposed 13 
category compared with the bottom quintile (reference category). Associations with leg fat mass are from 9,747 14 
participants of the Fenland study and are reported on the left. Associations with incident type 2 diabetes are from 15 
7,420 incident cases and 9,267 controls of the InterAct study and are reported on the right. Squares represent the 16 
beta coefficients in grams of leg fat mass (left plot) or the hazard ratio (HR) for incident type 2 diabetes (right 17 
plot) in each category compared with the lowest quintile. Error bars represent the 95% confidence intervals of 18 
these estimates. Panel D: associations of individual lead SNPs at eight loci with waist, hip circumference (left) 19 
and type 2 diabetes (right). Loci were selected on the basis of their genome-wide significant association with hip 20 
circumference or body fat percentage (i.e. PIK3R1). Waist and hip circumference analyses are from a meta-21 
analysis of the GIANT and UK Biobank studies. Type 2 diabetes analyses are from a meta-analysis of the 22 
DIAGRAM, InterAct and UK Biobank studies. Squares with error bars represent the per-allele beta coefficients 23 
in standard deviation units of waist and hip circumference (left plot) or the per-allele odds ratio (OR) of type 2 24 
diabetes (right plot). Error bars represent the 95% confidence intervals of these estimates. *Detailed associations 25 
at the PIK3R1 locus, which was primarily associated with lower body fat percentage, are presented in 26 
Supplementary Figure 9. 27 
 28 
Figure 2. Associations at the 53 genomic loci with familial partial lipodystrophy type 1 (FPLD1). Panel A: 29 
distribution of leg fat mass as a function of the fat mass of the rest of the body (from DEXA) in women of the 30 
Fenland study at the extreme quintiles (Q) of the 53-SNP genetic score and in 14 FPLD1 subjects. Q1 represents 31 
a low genetic burden, whereas Q5 a high genetic burden. Lines of fit are plotted for each group. Panel B: 32 
histograms of the distribution of risk alleles in the FPLD1 subjects and in control women from the UKHLS study. 33 
Panel C: bi-dimensional box plots of the distribution of leg fat mass as a function of the distribution of the number 34 
of risk alleles in women of the Fenland study at the extreme quintiles (Q) of the 53-SNP genetic score and in 35 
FPLD1 subjects. Q1 represents a low genetic burden, whereas Q5 a high genetic burden. Each rectangle represents 36 
a group of individuals. For each dimension, the two sides of the rectangle represent the interquartile range and the 37 
central line the median. Data for obese women from Fenland were plotted to show the relationship between genetic 38 
risk and levels of leg fat in a group of women with a similar body mass index to that of FPLD1 patients.  39 
 40 
Figure 3. Putative effector genes, tissues and cell types. Panel A: schematic representation of some established 41 
components of the insulin signalling pathway with stars reporting the location in the pathway of putative effector 42 
genes, with their respective lead single nucleotide polymorphism listed. Panel B: associations of gain- and loss-43 
of-function genetic variants in the LPL gene with type 2 diabetes. The reference number in parenthesis refers to 44 
the study reporting the association with triglycerides and coronary heart disease (see reference number 38 of this 45 
manuscript).38 Panel C: summary of evidence about links between genetic variants, lipodystrophy, insulin 46 
resistance, and type 2 diabetes at different levels of the population phenotypic distribution. *Rare syndromes 47 
caused by autosomal dominant INSR mutations are not usually associated with lipodystrophy and the INSR 48 
rs8101064 polymorphism is not associated with body fat percentage. Panel D: overlap of the 53 loci (lead SNPs 49 
plus proxy variants in r2>0.8) with chromatin state annotations from the NIH Roadmap. Panel E: DEPICT’s 50 
annotation of cell types and tissues on the basis of expression patterns in 37,427 human microarray samples. The 51 
y-axis represents the –log10(p-value) for enrichment of signal in a cell or tissue type attributed by DEPICT. The 52 
horizontal broken line represents the multiple-test corrected threshold of statistical significance (Bonferroni 53 
p=0.00072).  54 
 55 
Figure 4. Experimental knockdown of putative effector genes in cellular adipogenesis models and 56 
comparisons with phenotypic associations. Panel A: results of experimental knockdown in OP9-K cells. Full 57 
circles represent the difference of the means from knockout experiments of a given gene compared with control 58 
experiments (n=4-7). Error bars represent the 95% confidence intervals of the difference of the means. Top graph: 59 
effect on mRNA levels of knockdown experiments of target genes using short interfering RNA (siRNA) in OP9-60 
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K cells. The two-tailed t-test p-values for differences in means were: IRS1, p=4.6 x 10-06; CCDC92, p=2.7 x 10-1 
09, DNAH10, p=2.4 x 10-06; L3MBTL3, p=4.6 x 10-06; FAM13A, p=2.4 x 10-05. Bottom graph: effect on lipid 2 
accumulation in siRNA knockdown experiments. The two-tailed t-test p-values for differences in means were: 3 
IRS1, p=0.0047; CCDC92, p=1.2 x 10-05, DNAH10, p=0.0027; L3MBTL3, p=0.00013; FAM13A, p=0.92. Panel 4 
B: illustrative images showing florescence microscopy from lipid accumulation experiments. Red indicates 5 
adipored staining of neutral lipid, blue is hoechst staining of nuclei. Panel C: Association of the risk (insulin-6 
raising) allele of the lead single nucleotide polymorphism in or near each of the putative effector genes with (a) 7 
the expression of the corresponding gene in subcutaneous adipocytes in the EUROBATS project (top graph in the 8 
panel); (b) hip circumference in a meta-analysis of GIANT and UK Biobank (mid graph); and (c) type 2 diabetes 9 
in a meta-analysis of InterAct, DIAGRAM and UK Biobank (bottom graph). Full circles represent the –log10(p-10 
value) for the association of the insulin-raising allele multiplied by the direction of the beta coefficient (i.e. a 11 
“directional” –log10(p)). For graphic display purposes, the –log10(p-value) for the association with type 2 12 
diabetes of the rs2943645-T allele near IRS1 is represented as 10 instead of 16.9.  13 
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Tables 1 
 2 
Table 1. Association with “gold-standard” insulin resistance measures, type 2 diabetes 3 
and coronary heart disease of genetic scores comprising lead polymorphisms at identified 4 
loci. Results are displayed for genetic scores comprising either (a) the lead SNP at each of the 5 
53 associated loci or (b) the lead SNP at each of the 43 additional loci identified in this study 6 
after removing 10 previously implicated in insulin resistance or (c) the lead SNP at each of the 7 
28 loci not previously associated with levels of HDL cholesterol or triglycerides. 8 
 9 

Exposure Outcome 

Sample 
size, N or 
N cases 
and N 

controls 

Beta or odds 
ratio 

SE or 95% CI p-value 

 
Association with “gold-standard” measures of insulin sensitivity 
 

53-SNP score 
Insulin sensitivitya 2,764 

-0.09 0.019 4.3 x 10-06 
43-SNP score -0.08 0.022 4.6 x 10-04 
28-SNP score -0.09 0.022 2.6 x 10-05 
53-SNP score 

Insulin sensitivity 
indexb 4,769 

-0.10 0.016 7.3 x 10-10 
43-SNP score -0.08 0.018 4.6 x 10-05 
28-SNP score -0.09 0.027 0.0010 

 
Association with disease endpoints 
 

53-SNP score 

Type 2 diabetes 

45,836 
cases and  
230,358 
controls 

1.12 1.11, 1.14 9.2 x 10-61 
43-SNP score 1.09 1.08, 1.11 7.6 x 10-29 

28-SNP score 1.11 1.09, 1.13 1.9 x 10-25 

53-SNP score 
Coronary heart 

disease 

63,746 
cases and  
130,681 
controls 

1.05 1.04, 1.06 1.8 x 10-13 
43-SNP score 1.04 1.03, 1.06 5.7 x 10-08 

28-SNP score 1.04 1.02, 1.06 1.2 x 10-05 
Abbreviations: N, number of participants; SE, standard error; CI, confidence interval; SNP, single nucleotide polymorphism. 10 
Beta coefficients are in standardised units per standard deviation of the 53-SNP genetic score (i.e. 4.5 alleles); odds ratios are 11 
per standard deviation of the 53-SNP genetic score (i.e. 4.5 alleles). The association with insulin sensitivity is from 2,764 12 
participants of the GENESIS consortium27 and the association with the insulin sensitivity index is from 4,769 participants of 13 
the MAGIC consortium who underwent a frequently sampled oral glucose tolerance test (OGTT)33; the association with type 14 
2 diabetes is from the InterAct, DIAGRAM and UK Biobank studies; the association with coronary heart disease is from the 15 
CARDIoGRAM and the C4D consortia.  16 
a In MAGIC, insulin sensitivity index (ISI) = 10,000/√ (fasting plasma glucose (mg/dl)×fasting insulin×mean glucose 17 
during OGTT (mg/dl)×mean insulin during OGTT).33  18 
b In GENESIS, insulin sensitivity was measured by clamp or insulin suppression test using study-specific parameters (e.g. 19 
glucose disposal or M-value) which were then standardised before meta-analysis.27  20 
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Online Methods 1 

Study design 2 

 We integrated the results of genome-wide analyses on insulin and lipid phenotypes with 3 

the aim of identifying genetic variants associated with an insulin resistance phenotypic pattern 4 

(Supplementary Figures 1-4). We then investigated the mechanistic links of genetic variation 5 

at 53 identified genomic regions with cardiometabolic diseases by integrating analyses of: (a) 6 

cardiometabolic traits and outcomes from up to 451,193 individuals; (b) detailed continuous 7 

metabolic traits from 12,848 deeply-phenotyped individuals; (c) genetic and clinical features 8 

from 37 individuals diagnosed with familial partial lipodystrophy type 1; (d) gene expression 9 

from over 100 separate eQTL datasets and (e) siRNA mediated knockdown of putative effector 10 

genes in experimental adipogenesis models (Supplementary Table 1 and Supplementary 11 

Figures 1-2).  12 

 13 

Participating studies 14 

 Lists of phenotypes, participating studies and sample sizes for each analysis are in 15 

Supplementary Table 1 and Supplementary Figures 1-2. Details about participants and 16 

cohorts with individual-level genotype data are in Supplementary Table 14. Ethical approvals 17 

were obtained at each study site and informed consent was obtained from all participants. 18 

 The Fenland study is a population-based cohort study of 12,435 participants without 19 

diabetes born between 1950 and 1975. Participants were recruited from general practice 20 

surgeries in Cambridge, Ely and Wisbech (United Kingdom) and underwent detailed metabolic 21 

phenotyping and genome-wide genotyping.  22 

 EPIC-Norfolk is a prospective cohort study of 25,639 individuals aged between 40 and 79 23 

and living in the Norfolk county in the United Kingdom78 at recruitment. EPIC-Norfolk is a 24 

constituent cohort of the European Prospective Investigation of Cancer (EPIC).79 A total of 25 
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3,101 participants with available dual energy X-ray absorptiometry (DEXA) were included in 1 

analyses of detailed anthropometry, while 9,150 participants were included in analyses of 2 

change in hip or waist circumference in individuals who gained weight during follow-up.  3 

 EPIC-InterAct is a case-cohort study nested within the EPIC study, a cohort study of 4 

519,978 European participants.80 During an average of 8 years of follow-up, 12,403 individuals 5 

who were free of diabetes at baseline were identified incident type 2 diabetes cases.80 InterAct 6 

has also defined a randomly-selected subcohort of 16,154 individuals free of diabetes at 7 

baseline.80 Data on 15,357 individuals with available genotyping and not overlapping with 8 

DIAGRAM34 were included.  9 

 UK Biobank is a population-based cohort study of ~500,000 people aged between 40-69 10 

years who were recruited in 2006-2010 from several centres across the United Kingdom.81 11 

Associations with prevalent type 2 diabetes were estimated in 111,016 individuals (4,586 cases 12 

and 106,430 controls) of the initial UK Biobank dataset. We also used the UK Biobank data 13 

for anthropometry analyses and for a sensitivity analysis of prevalent coronary heart disease 14 

(i.e. self-reported myocardial infarction or angina) in 5,369 cases and 106,969 controls.  15 

 The United Kingdom Household Longitudinal Study (UKHLS; also known as 16 

Understanding Society) is a longitudinal panel survey of 40,000 households representative of 17 

the population of the United Kingdom. Participants were surveyed annually since 2009 and 18 

contributed information relating to their socioeconomic circumstances, attitudes, and 19 

behaviours via a computer assisted interview. For a subset of individuals who took part in a 20 

nurse health assessment, blood samples were taken and genomic DNA analysed. 21 

 In addition to individual-level genotyping data, we used genome-wide meta-analyses 22 

results on a variety of cardiometabolic traits and disease endpoints (Supplementary Table 1 23 

and Supplementary Figures 1-2). 24 

 25 
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Detailed anthropometric analyses 1 

 In the Fenland and EPIC-Norfolk studies, body composition was determined by dual-2 

energy X-ray absorptiometry (DEXA) using a Lunar Prodigy advanced fan beam scanner (GE 3 

Healthcare, Bedford, UK) using the encore software version 14.10.022 (GE Healthcare, 4 

Bedford UK). Participants were scanned by trained operators using standard imaging and 5 

positioning protocols. The coefficient of variation for scanning precision, calculated from 30 6 

consecutive scans, was 2% for total fat mass. The enCORE software was used to demarcate 7 

regional boundaries. All the images were manually processed by one trained researcher, who 8 

corrected demarcations according to a standardized procedure. Boundaries of body regions are 9 

described in details in the Supplementary Note. In the UK Biobank study, body fat percentage 10 

was estimated by bio-impedance using the Tanita BC418MA body composition analyser. 11 

 12 

Association of genetic variants with insulin resistance phenotypes 13 

 A dyslipidaemic pattern with higher triglyceride levels and lower HDL cholesterol is 14 

considered characteristic of the clinical presentation of insulin resistance 13 and has been used 15 

to specifically identify individuals with insulin resistance.30 In a previous large-scale genome-16 

wide discovery of genetic determinants of fasting insulin levels, among 19 fasting insulin-17 

associated loci we identified ten that were strongly associated with higher triglycerides and 18 

lower HDL cholesterol.28 This pattern of association was used to refine loci which were then 19 

validated as being associated with “gold-standard” measures of insulin resistance.31 Loci 20 

associated with insulinaemia but not with lipid traits included TCF7L2,28 which is primarily 21 

implicated in insulin secretion, rather than resistance.82 These findings suggested that the 22 

combined association with this triad of phenotypes could help identify specific genetic 23 

determinants of insulin resistance.  24 
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 With this background, we systematically triangulated the results of the association of 1 

~2.4M single nucleotide polymorphisms (SNPs) with fasting insulin adjusted for body mass 2 

index (FIadjBMI; from up to 108,557 participants of the MAGIC consortium),28,29 HDL-3 

cholesterol, and triglycerides (from up to 188,577 participants of the Global Lipids Genetics 4 

Consortium)32 using publicly available genome-wide results (Supplementary Figures 1-4). 5 

For FIadjBMI analyses, we used metabochip association results28 when available. We aligned 6 

alleles across the three phenotypes such that the effect allele was the insulin-raising allele. We 7 

took forward for further analysis all SNPs associated with higher FIadjBMI, higher 8 

triglycerides and lower HDL cholesterol at p<0.005 for each of the three traits. The prior 9 

probability for association of a given SNP with the three traits and in the pre-specified 10 

directional concordance under the null hypothesis corresponds to 0.005*0.0025*0.0025 = 3.1 11 

x 10-08. In each 1 Mb locus, we retained the lead SNP for association with fasting insulin for 12 

further analysis (Supplementary Figure 4).  13 

 Fasting insulin analyses adjusted for BMI were chosen because we were interested in 14 

identifying genetic determinants of insulin resistance for a given level of adiposity. It has been 15 

proposed that adjusting genetic association analyses for covariates such as BMI might result in 16 

a bias known as “collider bias”.83,84 Therefore, we assessed the association of the 53 lead SNPs 17 

for a bias in the identification of variants primarily associated with BMI and artificially 18 

associated with fasting insulin, but found no evidence on such bias (Supplementary Figure 19 

12).  20 

 21 

Statistical methods 22 

 We studied the association of individual SNPs and of genetic scores with continuous 23 

metabolic traits and endpoints. Where individual level genotype data was available, the 24 

associations of genetic variants or scores (i.e. the sum of effect alleles) with outcomes were 25 
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estimated using multivariable linear, logistic or Cox regression models. For result-level 1 

association data, we used the inverse-variance weighted method developed by Burgess et al., 2 

assigning a weight of 1 to each SNP, to approximate the association of an unweighted genetic 3 

risk score.85 Statistical analyses were conducted using STATA v14.1 (StataCorp, College 4 

Station, Texas 77845 USA), R v3.2.2 (The R Foundation for Statistical Computing), and 5 

METAL.29 All p-values presented in the study are two-tailed p-values. 6 

 7 

Analyses in a severe form of partial lipodystrophy and insulin resistance 8 

 We studied the clinical and genetic characteristics of 37 women with familial partial 9 

lipodystrophy type 1 (FPLD1; also called Köbberling-type familial partial lipodystrophy).  10 

 All cases were referred to the insulin resistance/lipodystrophy specialist centre led by Drs 11 

Semple, Savage and O’Rahilly in Cambridge. FPLD1 is currently a clinical diagnosis used to 12 

describe predominantly women with selective paucity of limb adipose tissue, central obesity, 13 

severe insulin resistance, and a higher risk of type 2 diabetes.86,87 As some women with 14 

lipodystrophy due to loss-of-function mutations in PPARG manifest a similar phenotype (i.e. 15 

FPLD3), mutations in this gene were excluded in all FPLD1 cases included in this study. The 16 

biochemical and anthropometric phenotype of the 37 FPLD1 patients was compared with that 17 

of female participants of the Fenland study. In these analyses we compared the phenotypes of 18 

the 37 FPLD1 patients with those of all Fenland study women (Figure 2) and with those of 19 

obese Fenland study women (Figure 2 and Supplementary Table 8), who have a similar BMI 20 

to that of FPLD1 women.  21 

 To understand the genetic basis of FPLD1, we carried out exome sequencing analyses in 22 

18 individuals from 9 pedigrees with FPLD1 without identifying any clear candidate mutations 23 

or genes. Sequencing, variant calling and annotation were performed as described previously 24 

(Family 2;88 Families 1 and 3–9 as part of the UK10K project).89 Calls were annotated with 25 
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1000 Genomes allele frequencies and the NCBI dbSNP database build 132 1 

(ftp://ftp.ncbi.nih.gov/snp/organisms/human_9606/). Variants were defined as potentially 2 

functional if they were non-synonymous, resulted in loss or gain of a stop codon or a frameshift, 3 

or occurred within essential splice sites. Those unlikely to have a functional impact were 4 

removed, as were all variants found with a MAF >1% in individuals of European descent from 5 

the 1000 Genomes Phase 1v3 (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/) or 6 

the NHLBI ESP Exomes (URL: http://evs.gs.washington.edu/EVS/; January 2012). Further 7 

filtering was then implemented to retain only variants in genes seen in multiple patients. 8 

We compared the burden of the 53-SNP genetic score in the 37 FPLD1 patients with 9 

that of 5,296 unrelated control women from UKHLS. Genome-wide genotyping of UKHLS 10 

women was performed using the Illumina Infinium HumanCoreExome-12 v1.0 BeadChip. 11 

Genotype calling was performed using the Illumina GenCall software. Genome-wide 12 

genotyping of FPLD1 patients was performed using the Illumina® Infinium CoreExome-13 

24v1.0 chip. Prior to imputation, the following quality control criteria were applied for 14 

exclusion of SNPs in PLINK90 (version 1.07): (1) minor allele frequency <0.01; (2) Hardy-15 

Weinberg equilibrium p<1 x 10-06; (3) call rate <99%; (4) differential missingness between 16 

cases and controls p<1 x 10-06; (5) SNPs showing differential genotyping between the 17 

CoreExome-24v1.0 and CoreExome-12v1.0 chips. Samples were excluded prior to imputation 18 

in PLINK based on the following criteria: (1) call rate <95%; (2) autosomal heterozygosity >3 19 

standard deviations from the mean; (3) pairwise identity by descent was calculated and one 20 

individual was removed for every pair of individuals with a pi-hat >0.05, with preference given 21 

to retaining female samples; (4) identity assessed by the concordance between the genome-22 

wide and Fluidigm® genotypes at 24 sites (excluding individuals with concordance <90%); (5) 23 

ethnic outliers based on a principal components analysis. Imputation was performed using the 24 

1000 Genomes Phase 3 reference panel using SHAPEIT291 (version 2.r644) and IMPUTE292 25 
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(version 2.3.1). FPLD1 cases and UKHLS controls were imputed together. In an analysis of 1 

the genetic principal components derived from genome-wide genotyping (defined based on the 2 

combined sample), the 37 FPLD1 patients clustered with UKHLS control women 3 

(Supplementary Figure 13).  Association analyses were performed in R by logistic regression 4 

adjusting for age and the first 10 genetic principal components. We also derived a permutation-5 

based null comparator by performing 100,000 permutations of randomly selecting 53 SNPs 6 

(>1Mb apart) from genome-wide analyses of FPLD1 status adjusted for age and principal 7 

components and performing summary statistic Mendelian randomisation.85 Of 100,000 8 

iterations, 201 had a p-value less than our observed association (ppermutation= 2.01 x 10-03). 9 

 10 

Prioritisation of putative effector genes 11 
 12 
 We sought to determine the putative effector genes at the 53 loci. We combined 13 

information on (a) physical proximity, (b) eQTL data from over 100 repositories, (c) functional 14 

and regulatory annotations and (d) previous knowledge about causal genes for monogenic 15 

forms of insulin resistance.  16 

 For physical proximity analysis, we reviewed genes within a 1 Mb-window of each lead 17 

SNP and generated regional association plots using LocusZoom.93 For eQTL analysis, we 18 

analysed both publicly available and unpublished datasets (see below). For functional 19 

annotation, we used the gene and the tissue/cell type prioritisation functions of the integrative 20 

software DEPICT,44 in order to gain insights about putative effector genes, tissues and cell 21 

types. We also looked for nonsynonymous variants in linkage disequilibrium with the lead SNP 22 

(r2>0.8) in European ancestry populations using Haploreg v3.94  23 

We assessed the overlap of identified loci with chromatin state definitions of active 24 

enhancers and active promoters for 98 cell types from the NIH Epigenome Roadmap project, 25 

including a total of 196 genomic annotations. For each of the 53 lead SNPs, we identified the 26 
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set of proxy variants in high linkage disequilibrium (CEU r2>0.8) using SNAP95 and defined a 1 

‘locus’ as a lead SNP plus its proxies. We then calculated the number of loci where at least one 2 

variant at the locus overlapped a given annotation. We determined enrichment in the overlap 3 

at the 53 loci compared to an expected distribution built from randomly selected matched loci. 4 

First, we identified all variants with genome-wide significant association (p<5 x 10-08) to any 5 

trait in Europeans from the GWAS catalog.96 We then pruned this set of variants (using a CEU 6 

r2 threshold of 0.1), resulting in a list of independent trait-associated variants. For each of these 7 

variants, we constructed a background ‘locus’ as the set of proxy variants in high linkage 8 

disequilibrium (CEU r2<0.8). For each of the 53 loci, we then selected a locus from the 9 

background set matched on total number of proxy variants, total genomic distance covered, 10 

and distance of the midpoint to the closest gene transcription start site. We then re-calculated 11 

the overlap of each annotation in the set of matched background loci. We obtained the expected 12 

overlap for each annotation by averaging over 1 million permuted background locus sets. We 13 

then tested for enrichment of each annotation with a binomial test using the observed number 14 

of overlapping loci, total number of loci and expected percentage of overlapping loci.   15 

 We compiled a list of 13 genes (PPARG, INSR, PIK3R1, TBC1D4, LMNA, PLIN1, AKT2, 16 

CIDEC, AGPAT2, BSCL2, CAV1, PTRF, PCYT1A) known to cause monogenic forms of 17 

insulin resistance from the literature13 and used that to look for overlap with genes in identified 18 

regions. Two experts in the clinical care of patients with monogenic insulin resistance (Drs 19 

Semple and Savage) reviewed the curated list. 20 

 21 

Analysis of eQTLs in multiple tissues 22 

 Using a curated collection of over 100 separate eQTL datasets, we queried whether the 53 23 

lead SNPs or their proxies (r2>0.8) were associated with transcript expression in a wide range 24 

of tissues. Proxy SNPs in linkage disequilibrium in European ancestry populations were 25 
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identified using SNAP.95 For this study, we considered all associations below a p-value cut-off 1 

of 1 x 10-06. A general overview of a subgroup of >50 eQTL datasets has been published,97 2 

with specific citations for the >100 datasets included in the current query provided in the 3 

Supplementary Note.  4 

 5 

Specific analysis of eQTLs in subcutaneous adipose tissue 6 

 We analysed in depth the association of lead SNPs with gene expression in subcutaneous 7 

adipose tissue using two subcutaneous adipose tissue cis-eQTL datasets. The first dataset was 8 

generated by the EUROBATS consortium and consists of samples from well-phenotyped 9 

healthy female twins (n=766) with eQTLs derived as described previously.98 We also used the 10 

subcutaneous adipose tissue data (n=298) generated by the GTEx consortium (version 6),99 11 

which were obtained from www.gtexportal.org on 20/11/15. GTEx results were limited to 12 

GENCODE “protein_coding” and “lincRNA” biotype transcripts, and only variants with a 13 

minor allele frequency >0.01 were used. Linkage disequilibrium statistics between the index 14 

SNP (lead SNP for fasting insulin at the locus) and the most significant expression SNP for the 15 

gene were calculated in PLINK 1.9 using 1000 Genomes phase 1 version 3 European ancestry 16 

samples.90 We also assessed the regulatory trait concordance (RTC) value for SNPs associated 17 

with gene expression in adipose tissue, in order to assess the likelihood of co-localisation of 18 

signal with the lead eQTL signal at that region.100 In brief, if the index variant and the eQTL 19 

do tag the same causal variant, it is expected that removing the genetic effect of the index 20 

variant will have a significant consequence on the eQTL association. To this end, the RTC 21 

method assesses the likelihood of a shared functional effect between a GWAS variant and an 22 

eQTL by quantifying the change in the statistical significance of the eQTL after correcting for 23 

the genetic effect of the index variant and comparing its correction impact to that of all other 24 

SNPs in the interval. We considered an RTC of ≥ 0.8 or high linkage disequilibrium between 25 
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the lead eQTL SNP and trait-associated SNP (r2>0.8) to be supporting evidence of co-1 

localisation. 2 

 3 

Functional studies in mouse OP9-K cells 4 

 We sought to experimentally validate candidate causal genes at loci associated with lower 5 

levels of peripheral adiposity, higher risk of type 2 diabetes and with gene expression in 6 

subcutaneous adipose tissue (Supplementary Note and Supplementary Figure 11). We 7 

studied the effects of gene knockdown using siRNA on adipogenic differentiation in murine 8 

OP9-K cell lines. The mouse OP9-K cell line used in this study is a model suitable for mid-9 

throughput screening of genes influencing adipogenesis. OP9-K cells are clonal cells derived 10 

from mouse stromal OP9 cells obtained from the bone marrow, that accumulate large lipid-11 

droplets after 72 hours of adipogenic stimulation.45 OP9-K cells were grown and differentiated 12 

using oleic acid-containing differentiation media as described previously.45 For siRNA 13 

transfections, 2.5 x 104 cells per well were cultured in the 24-well dish. After 24hrs, cells were 14 

transfected with smartpool siRNA (from Dharmacon) against each gene using Optifect reagent 15 

as per the manufacturer protocol. On the following day, differentiation of OP9-K cells into 16 

adipocytes was initiated by replacing the media with 500 µL of differentiation media. After 17 

48hrs of differentiation induction, differentiated cells were stained with adipored to assess lipid 18 

accumulation using fluorescent spectroscopy. For quantitative-PCR, total RNA was isolated 19 

from differentiated OP9-K cells and cDNA was synthesized using TaqMan® Fast Cells-to-20 

CT™ Kit (Applied Biosystems) according to manufacturer's instructions. Quantitative real-21 

time PCR analysis was performed on a TaqMan ABI Prism 7900 Sequence Detector System 22 

(Applied Biosystems). Expression results were analysed relative to GAPDH mRNA content in 23 

the same sample. 24 

 25 
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Supplementary Note 

 

Associations at the 53 loci with changes in hip circumference in weight gainers  

 The association with lower levels of peripheral fat mass but higher cardiometabolic risk 

of the 53-SNP genetic score suggested that individuals with a greater number of alleles are 

unable to expand their peripheral fat compartment. To corroborate this finding, we used 

weight gain as a surrogate measure for a positive energy balance and change in hip 

circumference in weight-gainers as a surrogate measure for the changes in peripheral fat 

compartments. We tested the associations of the 53-SNP genetic score in longitudinal data 

from 9,150 participants of the EPIC-Norfolk cohort study who gained weight during a 

median follow-up of 3.7 years. In these individuals, the 53-SNP genetic score was not 

associated with the amount of weight gained during follow-up (beta coefficient [standard 

error] in kg of weight change per SD of genetic score, -0.026 [0.029]; p=0.37). However, in 

analyses adjusted for age, sex, hip circumference at baseline and weight at baseline and the 

amount of weight gained during follow-up, the 53-SNP genetic score was negatively 

associated with change in hip circumference (beta coefficient [standard error] in cm of hip 

circumference change per SD of genetic score, -0.069 [0.031]; p=0.027). In the same 

participants, in analyses adjusted for age, sex, waist circumference at baseline and weight at 

baseline and the amount of weight gained during follow-up, the 53-SNP genetic score was 

not associated with the change in waist circumference during follow-up (beta coefficient 

[standard error] in cm of waist circumference change per SD of genetic score, 0.055 [0.042]; 

p=0.20). These results support the notion that individuals with greater burden of the 53 alleles 

have a relative incapacity of expanding their peripheral fat compartment when challenged by 

a positive energy balance.  



 

 

Selection of putative effector genes for experimental validation 

 In light of (a) the enrichment for loci overlapping adipose tissue active enhancer 

elements and affecting adipocyte gene expression and (b) the association of risk alleles with 

lower peripheral adiposity, but higher cardiometabolic risk, we hypothesised that some of the 

risk alleles may act via impaired adipogenesis. We further hypothesised that the effects on 

adipogenesis could be caused by the altered expression of an effector gene in peripheral 

adipose tissue (Supplementary Figure 11A). Therefore, to test this hypothesis, we selected 

five genes at four loci associated with (a) expression of a putative effector gene in 

subcutaneous adipocytes (p<5 x 10
-08

), (b) lower levels of peripheral fat (p<5 x 10
-05

 for hip 

circumference) and (c) higher risk of metabolic disease (p<0.05 for type 2 diabetes; see 

Supplementary Tables 10 and 13 and Supplementary Figure 11 for details). For the IRS1 

(RTC=0.86) and L3MBTL3 genes (r
2
 between lead and best expression SNPs=0.83) there was 

evidence supporting co-localisation of phenotypic and expression signals. For the CCDC92, 

DNAH10 and FAM13A genes, the lead expression SNPs (eSNPs) at the locus (rs825452 for 

CCDC92, rs78985577 for DNAH10 and rs13149209 for FAM13A) were not captured by the 

HapMap-imputed FIadjBMI association data,
21, 22

 meaning they could not be captured by our 

triangulation of fasting insulin and lipid data. However, the best HapMap proxy for each of 

those eSNPs was also associated with FIadjBMI in MAGIC,
1,2

 further supporting our 

prioritisation of those genes (see below).  

 For CCDC92, the lead eSNP (rs825452, pexpression=8.3 x 10
-31

) was in very low linkage 

disequilibrium (r
2
=0.001) with our lead SNP for association with FIadjBMI (rs7973683). 

However, rs7973683 was also strongly associated with CCDC92 expression in adipocytes 

(pexpression=2.1 x 10
-29

), indicative of two distinct signals of association with CCDC92 

expression levels. Furthermore, while the lead eSNP was not available in FIadjBMI results, a 

strong proxy (rs825453; r
2
=1) for the lead eSNP was also associated with FIadjBMI 



 

 

(p=0.0053). In the same locus, we found that our lead SNP for association with FIadjBMI 

levels (rs7973683) was also associated with expression of DNAH10 (pexpression=1.9 x 10
-08

). 

This was in modest linkage disequilibrium (r
2
=0.27) with the lead eSNP for DNAH10 

expression (rs78985577, pexpression=4.8 x 10
-12

). While the lead eSNP was not available in 

FIadjBMI data, a strong proxy (rs1316952; r
2
=0.83) was also associated with FIadjBMI 

levels (p=0.000086). At FAM13A, our lead SNP for association with FIadjBMI levels 

(rs3822072) was also associated with expression of FAM13A in subcutaneous adipocytes 

(pexpression=7.6 x 10
-12

). Our lead SNP was in low linkage disequilibrium (r
2
=0.038) with the 

lead eSNP (rs13149209, pexpression=4.5 x 10
-21

), a modest proxy for which (rs2085600; 

r
2
=0.72) was also associated with FIadjBMI levels (p=3.5 x 10

-06
). These results suggest that 

multiple independent eQTLs of those genes in adipose tissue are also associated with insulin 

levels and therefore further support our prioritisation of these genes. Genes at all the loci 

showing the pre-specified pattern of association were studied experimentally, with the 

exception of KLF14. We did not seek to experimentally validate the KLF14 gene, because it 

has been studied previously and previous studies suggest complex aetiologic mechanisms at 

this locus, including a potential parent-of-origin effect.
3
 In dedicated figures and tables, we 

report association criteria (Supplementary Figure 11B), selection flow-chart 

(Supplementary Figure 11C), association estimates at loci with an eQTL signal in 

subcutaneous adipocytes (Supplementary Table 10) and at the prioritised loci 

(Supplementary Table 13). Loci that did not meet the criteria were not prioritised for 

experimental validation of putative effector genes (Supplementary Figure 11 and 

Supplementary Table 10). Finally, on the basis of our hypothesis, we expected that the 

siRNA knockdown of the candidate causal gene would have effects on adipogenesis in the 

direction predicted by the adipose tissue eQTL. 

 



 

 

Whole and regional body composition analysis  

 Before scanning, the DEXA system was calibrated according to the manufacturer’s 

guidelines using a spine phantom made of calcium hydroxyapatite, embedded in a lucite 

block. The enCORE software automatically demarcates the regional boundaries. A protocol 

was established to manually refine these demarcations and all the images were processed by 

one trained researcher, who corrected the demarcations according to a standardized 

procedure. The arm region was derived by positioning a line from the crease of the axilla and 

through the glenohumeral. The trunk region includes the neck, chest, abdominal and pelvic 

areas. The leg region includes all of the area below the lines that form the lower borders of 

the trunk. The android region was defined as the area between the ribs and the pelvis, and is 

enclosed by the trunk region. This region is outlined by iliac crest and with a superior height 

equivalent to 20% of the distance from the top of the iliac crest to the base of the skull. The 

gynoid region includes the hips and upper thighs, and overlaps both the leg and trunk regions. 

The upper demarcation is below the top of the iliac crest at a distance of 1.5 times the android 

height. The total height of the gynoid region is two times the height of the android region. 

Estimates of overall and regional body fat, lean and bone masses were derived using the 

DEXA software. The software also uses an inbuilt algorithm to determine visceral adipose 

tissue (in grams) within the android region. The subcutaneous abdominal adipose tissue (in 

grams) was calculated as android fat mass minus visceral abdominal adipose tissue.  

  



 

 

List of sources for eQTL analyses 

 A general overview of a subset of eQTL datasets interrogated in this study has been 

published.
4
 Specific citations for all >100 datasets included in the current query are provided 

below. 

 Tissues (PubMed ID): blood cell related eQTL studies included fresh lymphocytes 

(17873875), fresh leukocytes (19966804), leukocyte samples in individuals with Celiac 

disease (19128478), whole blood samples (18344981, 21829388, 22692066, 23818875, 

23359819, 23880221, 24013639, 23157493, 23715323, 24092820, 24314549, 24956270, 

24592274, 24728292, 24740359, 25609184, 22563384, 25474530, 25816334, 25578447), 

lymphoblastoid cell lines (LCL) derived from asthmatic children (17873877, 23345460), 

HapMap LCL from 3 populations (17873874), a separate study on HapMap CEU LCL 

(18193047), additional LCL population samples (19644074, 22286170, 22941192, 

23755361, 23995691, 25010687, 25951796), neutrophils (26151758, 26259071), CD19+ B 

cells (22446964), primary PHA-stimulated T cells (19644074, 23755361), CD4+ T cells 

(20833654), peripheral blood monocytes (19222302,20502693,22446964, 23300628, 

25951796, 26019233), long non-coding RNAs in monocytes (25025429) and CD14+ 

monocytes before and after stimulation with LPS or interferon-gamma (24604202), CD11+ 

dendritic cells before and after Mycobacterium tuberculosis infection (22233810) and a 

separate study of dendritic cells before or after stimulation with LPS, influenza or interferon-

beta (24604203). Micro-RNA QTLs (21691150, 26020509), DNase-I QTLs (22307276), 

histone acetylation QTLs (25799442), and ribosomal occupancy QTLs (25657249) were also 

queried for LCL. Splicing QTLs (25685889) and micro-RNA QTLs (25791433) were queried 

in whole blood. Non-blood cell tissue eQTLs searched included omental and subcutaneous 

adipose (18344981, 21602305, 22941192, 23715323, 25578447), visceral fat (25578447) 

stomach (21602305), endometrial carcinomas (21226949), ER+ and ER- breast cancer tumor 



 

 

cells (23374354), liver (18462017,21602305,21637794, 22006096, 24665059, 25578447), 

osteoblasts (19654370), intestine (23474282) and normal and cancerous colon (25079323, 

25766683), skeletal muscle (24306210, 25578447), breast tissue (normal and 

cancer)(24388359, 22522925), lung (23209423, 23715323, 24307700, 23936167, 26102239), 

skin (21129726, 22941192, 23715323, 25951796), primary fibroblasts (19644074, 23755361, 

24555846), sputum (21949713), pancreatic islet cells (25201977), prostate (25983244), rectal 

mucosa (25569741), arterial wall (25578447) and heart tissue from left ventricles (23715323, 

24846176) and left and right atria (24177373). Micro-RNA QTLs were also queried for 

gluteal and abdominal adipose (22102887) and liver (23758991). Methylation QTLs were 

queried in pancreatic islet cells (25375650). Further mRNA and micro-RNA QTLs were 

queried from ER+ invasive breast cancer samples, colon-, kidney renal clear-, lung- and 

prostate-adenocarcinoma samples (24907074). Brain eQTL studies included brain cortex 

(19222302, 19361613, 22685416, 25609184, 25290266), cerebellar cortex (25174004), 

cerebellum (20485568, 22685416, 22212596, 22832957, 23622250), frontal cortex 

(20485568, 22832957, 25174004), gliomas (24607568), hippocampus (22832957, 

25174004), inferior olivary nucleus (from medulla) (25174004), intralobular white matter 

(25174004), occiptal cortex (25174004), parietal lobe (22212596), pons (20485568), pre-

frontal cortex (22031444, 20351726, 22832957, 23622250), putamen (at the level of anterior 

commussure) (25174004), substantia nigra (25174004), temporal cortex (20485568, 

22685416, 22832957, 25174004), thalamus (22832957) and visual cortex (23622250). 

 Additional eQTL data was integrated from online sources including ScanDB, the Broad 

Institute’s GTEx Portal, and the Pritchard Lab (eqtl.uchicago.edu). Cerebellum, parietal lobe 

and liver eQTL data was downloaded from ScanDB. Results for GTEx Analysis V4 for 13 

tissues were downloaded from the GTEx Portal and then additionally filtered as described 

below (www.gtexportal.org: thyroid, leg skin [sun exposed], tibial nerve, aortic artery, tibial 



 

 

artery, skeletal muscle, esophagus mucosa, esophagus muscularis, lung, heart (left ventricle), 

stomach, whole blood, and subcutaneous adipose [23715323]). Splicing QTL (sQTL) results 

generated with sQTLseeker with false discovery rate p≤0.05 were retained. 

  



 

 

Supplementary Tables 

Supplementary Table 1. Phenotypes, participating studies and maximum sample size. 

Analysis Phenotype Participating studies (N; PMID) 
Maximum 

sample size, N 

Identification 

of 53 loci 

FIadjBMI 
MAGIC (N=108,557; PMID: 22885924, 

22581228) 
108,557 

HDL cholesterol GLGC (N=188,577; PMID: 24097068) 188,577 

Triglycerides GLGC (N=188,577; PMID: 24097068) 188,577 

Validation of 

genetic scores 

FIadjBMI Fenland (N=4,694; this study) 4,694 

HDL cholesterol Fenland (N=6,101; this study) 6,101 

Triglycerides Fenland (N=6,101; this study) 6,101 

Insulin sensitivity 

index 
MAGIC (N=4,769; PMID: 24699409) 4,769 

Insulin sensitivity GENESIS (N=2,764; PMID: 25798622) 2,764 

Association 

with 

intermediate 

traits 

DEXA 
Fenland (N=9,747; this study); EPIC-Norfolk 

(N=3,101; this study) 
12,848 

Body fat percentage 

UK Biobank (N=110,358; this study); 

Fenland (N=9,747; this study);  

EPIC-Norfolk (N=3,101; this study) 

123,206 

BMI 
GIANT (N=339,198; 25673413); 

UK Biobank (N=111,995; this study)  
451,193 

Waist circumference 
GIANT (N=244,419; 25673412); 

UK Biobank (N=112,180; this study) 
356,599 

Hip circumference 
GIANT (N=227,412; 25673412); 

UK Biobank (N=112,172; this study) 
339,584 

Waist-to-hip ratio 
GIANT (N=226,586; 25673412); 

UK Biobank (N=112,158; this study) 
338,744 

Fasting plasma 

glucose 

MAGIC (N=133,010; PMID: 22885924, 

22581228) 
133,010 

2 hour glucose 
MAGIC (N=42,854; PMID: 22885924, 

20081857) 
42,854 

HbA1c MAGIC (N=46,368; PMID: 20858683) 46,368 

Alanine 

aminotransferase and 

gamma glutamyl 

transferase 

Fenland (N=10,330; this study) 10,330 

Association 

with disease 

Type 2 diabetes 

DIAGRAM (cases=34,840;  

controls=114,981; PMID: 22885922);  

InterAct (cases=6,410;  

controls=8,947; this study); 

UK Biobank (cases=4,586;  

controls=106,430; this study) 

45,836 cases 

230,358 controls 

Coronary heart 

disease 

CARDIoGRAMplusC4D (cases=63,746; 

controls=130,681; PMID: 21378988, 

23202125, 21378990); 

63,746 cases  

130,681 controls 

FPLD1 
Cambridge FPLD1 consortium (cases=37; this 

study); UKHLS (controls=5,296) 

37 cases  

5,296 controls 

  



 

 

Supplementary Table 2. List of the 53 genomic regions associated with insulin resistance phenotypes.  
 

SNP 
Genomic 

coordinate 

Alleles  

(effect / 

other) 

Beta 

FIadjBMI 

per allelea 

FIadjBMI 

p-value 

Beta 

triglycerides 

per alleleb 

Triglycerides 

p-value 

Beta 

HDL 

cholesterol 

per alleleb 

HDL 

cholesterol 

p-value 

Locus name Putative effector genesc 

Loci previously implicated in insulin resistance 

rs4846565 Chr1:219722104 G / A 0.022 1.76E-09 0.014 0.00019 -0.013 0.00078 RNU5F-1/LYPLAL1 RNU5F-1[N] 

rs10195252* Chr2:165513091 T / C 0.029 1.26E-16 0.028 6.99E-15 -0.025 3.49E-11 COBLL1/GRB14 COBLL1[N], GRB14[E] 

rs2943645* Chr2:227099180 T / C 0.032 2.26E-19 0.028 3.76E-15 -0.032 4.16E-17 IRS1 IRS1[E, EA] 

rs308971 Chr3:12116620 G / A 0.036 2.97E-11 0.021 3.51E-05 -0.016 0.0033 SYN2/PPARG SYN2[N, E], PPARG[MF] 

rs3822072* Chr4:89741269 A / G 0.020 1.80E-08 0.018 5.74E-07 -0.025 4.06E-12 FAM13A FAM13A[N, E, EA, D] 

rs6822892 Chr4:157734675 A / G 0.024 2.58E-10 0.012 0.00084 -0.019 1.93E-07 PDGFC PDGFC[N, E, EA, D] 

rs4865796* Chr5:53272664 A / G 0.025 2.16E-12 0.010 0.0030 -0.013 0.00030 ARL15/FST ARL15[N], FST[EA] 

rs459193* Chr5:55806751 G / A 0.025 1.15E-10 0.018 1.31E-05 -0.024 8.10E-09 ANKRD55 ANKRD55[N] 

rs2745353* Chr6:127452935 T / C 0.019 4.10E-07 0.017 1.18E-06 -0.020 7.42E-10 RSPO3 RSPO3[N, E, EA] 

rs731839* Chr19:33899065 G / A 0.025 5.13E-12 0.022 2.65E-09 -0.022 3.44E-09 PEPD PEPD[N, E] 

Additional loci 

rs683135* Chr1:39895460 A / G 0.014 0.00024 0.017 6.18E-07 -0.027 7.09E-12 MACF1 MACF1[N, NS, E, EA] 

rs17386142 Chr1:50815783 C / T 0.024 0.00092 0.022 0.0033 -0.022 0.00060 DMRTA2 DMRTA2[N], CDKN2C[D] 

rs11577194 Chr1:110500175 T / C 0.011 0.0025 0.011 0.0011 -0.019 1.34E-07 CSF1 CSF1[N] 

rs9425291 Chr1:172312769 A / G 0.015 2.71E-05 0.016 1.9E-05 -0.014 0.00046 DNM3 DNM3[N, E], PIGC[E, EA] 

rs2249105 Chr2:65287896 A / G 0.016 1.04E-05 0.016 2.35E-06 -0.016 0.00016 CEP68 CEP68[N, E, EA] 

rs492400 Chr2:219349752 T / C 0.010 0.0038 0.018 2.25E-06 -0.011 0.0049 USP37 USP37[N, E], ZNF142[NS, E, EA] 

rs3864041 Chr3:15185634 T / C 0.011 0.0038 0.009 0.0038 -0.013 0.00028 COL6A4P1 COL6A4P1[N] 

rs295449* Chr3:47375955 A / G 0.011 0.0020 0.014 0.00093 -0.019 0.00011 KLHL18 
KLHL18[N, E], SCAP[NS, E], 

SETD2[E, D] 

rs11130329* Chr3:52896855 A / C 0.024 0.00051 0.020 0.0018 -0.024 0.0010 TMEM110-MUSTN1 TMEM110-MUSTN1[N] 

rs9881942 Chr3:123082416 A / G 0.013 0.00014 0.010 0.0036 -0.015 4.79E-06 ADCY5 ADCY5[N] 

rs645040* Chr3:135926622 T / G 0.014 0.0012 0.029 1.83E-12 -0.031 1.53E-12 MSL2 MSL2[N, D] 

rs2699429* Chr4:3480136 C / T 0.011 0.0037 0.025 1.15E-11 -0.013 0.0042 DOK7 DOK7[N, E] 

rs4976033 Chr5:67714246 G / A 0.015 0.00013 0.014 0.00020 -0.022 6.42E-08 PIK3R1 PIK3R1[N, MF, D] 

rs6887914 Chr5:112711486 C / T 0.013 0.0037 0.014 0.0024 -0.017 0.00039 MCC MCC[N] 

rs1045241 Chr5:118729286 C / T 0.012 0.0020 0.015 4.06E-05 -0.014 0.00040 TNFAIP8 TNFAIP8[N, E, EA] 

rs2434612 Chr5:158022041 G / A 0.016 0.00034 0.015 0.00025 -0.020 0.000015 EBF1 EBF1[N, D] 

rs966544 Chr5:173350405 G / A 0.012 0.0010 0.016 1.63E-06 -0.013 0.0018 CPEB4 CPEB4[N, E] 

rs12525532 Chr6:35004819 T / C 0.019 8.95E-08 0.011 0.0026 -0.015 0.000040 ANKS1A ANKS1A[N, EA] 

rs6937438* Chr6:43815364 A / G 0.013 0.0011 0.014 0.00034 -0.019 1.94E-06 LOC100132354 LOC100132354[N] 

rs9492443 Chr6:130398731 C / T 0.014 0.0004 0.016 7.43E-05 -0.013 0.0042 L3MBTL3 L3MBTL3[N, E, EA] 

rs3861397* Chr6:139828916 G / A 0.014 0.00011 0.024 1.08E-10 -0.024 8.40E-11 LOC645434 LOC645434[N], CITED2[D] 

rs17169104 Chr7:15883727 G / C 0.020 1.52E-06 0.017 7.62E-05 -0.017 0.00028 MEOX2 MEOX2[N] 



 

 

rs972283* Chr7:130466854 G / A 0.022 4.41E-06 0.017 2.34E-07 -0.029 4.60E-16 KLF14 KLF14[N, E, EA] 

rs2126259* Chr8:9185146 T / C 0.041 3.30E-13 0.017 0.0020 -0.075 1.53E-42 PPP1R3B LOC157273[N], PPP1R3B[E] 

rs1011685* Chr8:19830769 C / T 0.019 0.00098 0.168 6.12E-197 -0.156 8.65E-150 LPL LPL[N, NS, E, D] 

rs4738141 Chr8:72469742 G / A 0.014 0.0014 0.020 2.45E-05 -0.019 0.00030 EYA1 EYA1[N, EA], LOC105375892[D] 

rs7005992* Chr8:126528955 C / G 0.016 0.0014 0.021 5.87E-06 -0.016 0.0011 TRIB1 TRIB1[N, D] 

rs498313 Chr9:78034169 A / G 0.013 0.00073 0.011 0.0026 -0.014 0.00033 MIR548H3 MIR548H3[N] 

rs10995441* Chr10:64869239 G / T 0.014 0.00085 0.017 1.19E-06 -0.018 0.00011 NRBF2 NRBF2[N, E] 

rs11231693 Chr11:63862612 A / G 0.036 7.19E-07 0.030 0.00012 -0.029 0.000069 MACROD1 MACROD1[N] 

rs17402950 Chr12:14571671 G / A 0.027 0.0047 0.032 0.0049 -0.034 0.0028 ATF7IP ATF7IP[N] 

rs718314 Chr12:26453283 G / A 0.017 3.65E-05 0.012 0.0015 -0.020 5.88E-06 ITPR2 ITPR2[N, E, D] 

rs7973683* Chr12:124449223 C / A 0.019 6.99E-07 0.025 4.67E-12 -0.029 5.26E-14 CCDC92/DNAH10 
CCDC92[N, NS, E, EA], DNAH10[E, 

EA] 

rs7323406 Chr13:111628195 A / G 0.015 0.0027 0.014 0.0044 -0.016 0.0032 ANKRD10 ANKRD10[N, E, D] 

rs7176058 Chr15:39464167 A / G 0.013 0.0036 0.016 0.00094 -0.015 0.00028 C15orf54 C15orf54[N], THBS1[EA] 

rs8032586 Chr15:73081067 C / T 0.019 0.0046 0.025 0.0010 -0.021 0.0030 LOC100287559 LOC100287559[N] 

rs754814 Chr17:4657034 T / C 0.011 0.0042 0.011 0.0022 -0.013 0.0014 ZMYND15 ZMYND15[N, E] 

rs7227237* Chr18:47174679 C / T 0.017 0.0013 0.017 0.00088 -0.020 0.00041 LIPG LIPG[N, E] 

rs8101064* Chr19:7293119 T / C 0.042 0.00062 0.069 1.91E-06 -0.066 0.000022 INSR INSR[N, MF, D] 

rs4804833* Chr19:7970635 A / G 0.016 7.11E-06 0.015 9.90E-06 -0.022 9.89E-08 MAP2K7 MAP2K7[N, E, D] 

rs4804311* Chr19:8615589 A / G 0.019 0.0026 0.039 1.49E-09 -0.051 3.74E-14 MYO1F MYO1F[N, E, EA] 

rs6066149 Chr20:45602638 G / A 0.013 0.0019 0.018 5.22E-06 -0.010 0.0037 EYA2 EYA2[N] 

rs132985* Chr22:38563471 C / T 0.016 4.69E-06 0.022 6.65E-11 -0.015 0.000017 PLA2G6 PLA2G6[N], MAFF[E, EA, D] 

Genomic coordinates refer to human genome build 37 (hg19). Beta coefficients are in standardised units, fasting insulin beta coefficients were standardised using the standard 

deviation in 8,917 participants of the Fenland study.  The gene column reports the nearest gene and/or additional candidate effector genes at the locus. 

*polymorphism within 500 kb of a lead SNP for HDL cholesterol or triglyceride levels reported by the Global Lipids Genetics Consortium (PubMed ID: 24097068). 

a From up to 108,557 participants of the MAGIC consortium (PubMed ID: 22885924, 22581228) 

b From up to 188,577 participants of the Global Lipids Genetics Consortium (PubMed ID: 24097068) 

c Assigned on the basis of the following criteria: N, nearest gene; NS, nonsynonymous variant in linkage disequilibrium with lead SNP (r2 >0.8); E, evidence of association with gene 

expression in surveyed eQTL repositories; AE, evidence of association with gene expression in subcutaneous adipose tissue; MF, monogenic insulin resistance forms associated with mutations 

in this gene; D, gene prioritised by DEPICT software as likely causal (significant p-value after accounting for false discovery rate). Relevant criteria are reported as superscript near each gene. 

Further details about methodology for the adjudication of these criteria are reported in the Online Methods sections dedicated to prioritisation of putative effector genes. 

Abbreviations: SNP, single nucleotide polymorphism; FIadjBMI, fasting insulin adjusted for body mass index; HDL, high-density lipoprotein cholesterol. 



 

 

Supplementary Table 3. Association with type 2 diabetes of the 53-polymorphism 

genetic score in analyses stratified by sex or body mass index. Results are scaled per 4.5 

alleles, i.e. a standard deviation of genetic risk score. Results are from the EPIC-InterAct and 

the UK Biobank studies. 

 

 Stratum 

Participants, 

type 2 diabetes 

cases / non-

cases 

OR (95% CI) p-value p-interaction 

Sex-stratified analysis 

Men 6,588 / 52,887 
1.12 

(1.09 – 1.16) 
4.13E-14 

0.90 

Women 5,418 / 62,811 
1.12  

(1.08 – 1.16) 
1.48E-11 

BMI-stratified analysis* 

BMI < 25 1,298 / 39,930  
1.16 

(1.09 – 1.23) 
3.71E-06 

0.16 
BMI ≥ 25  

and BMI < 30 
4,663 / 49,317 

1.17 

(1.13 – 1.22) 
1.73E-16 

BMI ≥ 30 5,945 / 26,090 
1.12 

(1.08 – 1.16) 
7.86E-10 

Abbreviations: OR, odds ratio; CI, confidence interval; BMI, body mass index. 

*Pairwise category heterogeneity tests: lean vs overweight: p=0.73; lean vs obese: p=0.31; 

overweight vs obese, p=0.061.  



 

 

Supplementary Table 4. Associations of lead single nucleotide polymorphisms at the 53 

loci with glycaemic, anthropometric traits and disease endpoints.  

(see Supplementary Table Excel file) 

  



 

 

Supplementary Table 5. Single nucleotide polymorphisms associated with higher risk of 

type 2 diabetes (45,836 cases 230,358 controls) and of coronary heart disease (63,746 

cases 130,681 controls). 

 

SNP Locus name 

Per allele OR type 2 

diabetes 

(95% CI) 

p-value 

Per allele OR coronary  

heart disease 

(95% CI) 

p-value 

rs2943645 IRS1 1.09 (1.07-1.11) 1.1E-17 1.03 (1.01-1.05) 0.0010 

rs6822892 PDGFC 1.04 (1.02-1.07) 2.1E-05 1.02 (1.00-1.04) 0.035 

rs459193 ANKRD55 1.08 (1.06-1.11) 8.0E-13 1.02 (1.00-1.04) 0.025 

rs4976033 PIK3R1 1.03 (1.01-1.05) 0.0022 1.07 (1.02-1.12) 0.0080 

rs9492443 L3MBTL3 1.05 (1.03-1.07) 3.1E-05 1.02 (1.00-1.04) 0.028 

rs3861397 LOC645434 1.03 (1.01-1.05) 0.0026 1.02 (1.00-1.04) 0.037 

rs972283 KLF14 1.04 (1.02-1.06) 1.2E-05 1.03 (1.01-1.04) 0.0037 

rs1011685 LPL 1.07 (1.04-1.10) 3.4E-05 1.09 (1.05-1.13) 8.7E-06 

rs7973683 CCDC92 / DNAH10 1.03 (1.01-1.05) 0.0037 1.02 (1.00-1.04) 0.019 

rs8101064 INSR 1.08 (1.01-1.16) 0.020 1.13 (1.02-1.25) 0.016 

rs731839 PEPD 1.04 (1.02-1.06) 0.00021 1.03 (1.01-1.04) 0.0090 

 Abbreviations: SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.  



 

 

Supplementary Table 6. Association of the genetic scores with alanine aminotransferase 

and gamma glutamyl transferase in 10,330 participants of the Fenland study. 

 

Exposure Outcome 

Beta per 

SD of 

genetic 

score in 

SDs of 

biomarker 

SE P-Value 

 

53-SNP score 

 Alanine 

aminotransferase 

0.054 0.009 1.37E-09 

43-SNP score 0.049 0.010 1.83E-06 

53-SNP score 
Gamma glutamyl 

transferase 

0.054 0.009 1.04E-09 

43-SNP score 0.045 0.010 6.39E-06 

Abbreviations: SNP, single nucleotide polymorphism; SD, standard deviation; SE, standard error. 

Beta coefficients are in standardised units per SD of genetic score (4.5 alleles). 

  



 

 

Supplementary Table 7.  European Genome-Phenome Archive Study, Dataset and Sample 

IDs for the raw, whole exome sequence data for 9 FPLD1 individuals and their family 

members. 

Family 

ID 

Sample EGA Study ID EGA Dataset ID EGA Sample ID 

1 Proband EGAS00001000130 EGAD00001000419 EGAN00001015630 

2 Proband EGAS00001000025 EGAD00001000380 EGAN00001001252 

2 Mother EGAS00001000025 EGAD00001000380 EGAN00001001832 

2 Father EGAS00001000025 EGAD00001000380 EGAN00001001825 

3 Proband EGAS00001000130 EGAD00001000419 EGAN00001015627 

4 Proband EGAS00001000130 EGAD00001000419 EGAN00001015629 

5 Proband EGAS00001000130 EGAD00001000419 EGAN00001015628 

6 Proband EGAS00001000130 EGAD00001000419 EGAN00001015631 

7 Proband EGAS00001000130 EGAD00001000419 EGAN00001015624 

7 Father EGAS00001000130 EGAD00001000419 EGAN00001015625 

8 Proband EGAS00001000130 EGAD00001000419 EGAN00001015633 

8 Father EGAS00001000130 EGAD00001000419 EGAN00001015651 

8 Sister 1 EGAS00001000130 EGAD00001000419 EGAN00001015652 

8 Sister 2 EGAS00001000130 EGAD00001000419 EGAN00001015653 

8 Sister 3 EGAS00001000130 EGAD00001000419 EGAN00001015654 

8 Sister 4 EGAS00001000130 EGAD00001000419 EGAN00001015656 

8 Brother EGAS00001000130 EGAD00001000419 EGAN00001015655 

9 Proband EGAS00001000130 EGAD00001000419 EGAN00001015632 

  



 

 

 

Supplementary Table 8. Characteristics of women with FPLD1 compared with obese women of the Fenland study. The phenotype comparison column summarises the 

results of comparisons between FPLD1 women and obese (BMI ≥30) Fenland study women for a given clinical variable (Student’s t-test), whereas the genetic score 

association pattern column summarises the association of the 53-SNP genetic score with a given phenotype in our genetic association analyses (see Figure 1A and 

Supplementary Table 6). 

 FPLD1 women Fenland - obese women Phenotype comparison, 

FPLD1 vs Fenland obese 

women, direction of 

association (p-value)
a
 

Pattern of association of 

genetic score, direction of 

association (p-value)
a
 

Variable, units N 
Mean  

(SD) 

Median  

(range) 
N 

Mean 

(SD) 

Median 

(range) 

Age, years 37 
49 

(12) 

48 

(22 - 75)  
1171 

49 

(7) 

50 

(29 - 64) N/A N/A 

Body mass index, kg/m
2
 35 

33 

(4) 

33 

(26 - 47) 
1171 

35 

(5) 

33 

(30 - 60) N/A* ↓ (p=4.5E-08) 

Waist circumference, cm 27 
111 

(12) 

112 

(78 - 143) 
1170 

103 

(10) 

102 

(79 - 154) ↑ (p=4.6E-05) ↑ (p=0.0028) 

Hip circumference, cm 27 
108 

(12) 

108 

(84 - 147) 
1163 

118 

(10) 

116 

(96 - 178) ↓ (p=3.7E-07) ↓ (p=2.3E-34) 

Waist-to-hip ratio 27 
1.04 

(0.09) 

1.02 

(0.91 - 1.22) 
1163 

0.87 

(0.07) 

0.87 

(0.63 - 1.17) ↑ (p=3.1E-33) ↑ (p=3.3E-88) 

Fasting plasma glucose, mmol/L 33 
11 

(5) 

10.7 

(4.9 - 21.9) 
1163 

5.0 

(0.7) 

4.9 

(3.4 - 12.3) ↑ (p=8.5E-161) ↑ (p=2.9E-10) 

HbA1c, % 35 
9 

(2) 

8.4 

(4.9 - 13.2) 
789 

5.6 

(0.5) 

5.6 

(3.9 - 9.7) ↑ (p=6.9E-140) ↑ (p=2.3E-06) 

Fasting insulin, pmol/L 29 
208 

(230) 

151 

(7.3 - 1210) 
987 

71.0 

(49.4) 

60.4 

(2.6 - 702.0) ↑ (p=6.0E-30) ↑** 

Triglycerides, mmol/L 34 
2.8 

(2.1) 

2.6 

(0.6 - 12.6) 
1168 

1.3 

(0.7) 

1.2 

(0.2 - 7.4) ↑ (p=1.5E-27) ↑** 

HDL cholesterol, mmol/L 34 
1 

(0.3) 

1 

(0.5- 2) 
1168 

1.5 

(0.3) 

1.4 

(0.6 - 3.4) ↓ (p=5.4E-21) ↓** 

Alanine aminotransferase, U/L 34 
39 

(25) 

31 

(13 - 126) 
1168 

29 

(17) 

25 

(6 - 236) ↑ (p=0.00090) ↑ (p=1.4E-09) 

Gamma glutamyl transferase, U/L 34 
67 

(51) 

50 

(12 - 212) 
1168 

35 

(32) 

27 

(7 - 530) ↑ (p=2.2E-08) ↑ (p=1.0E-09) 
a ↑ indicates associations (p<0.05) with higher levels of a given phenotype in FPLD1 (compared with obese women from the Fenland study) or for a greater number of risk alleles of the genetic 

score; ↓ indicates an association (p<0.05) with lower levels. 

Abbreviations: N, number of participants; SD, standard deviation; FPLD1, familial partial lipodystrophy type 1; N/A not assessed. *matching variable **not reported, genetic score selection 

variable



 

 

Supplementary Table 9. Associations at the 53 loci with gene expression from eQTL 

repositories of multiple tissues. 

(see Supplementary Table Excel file) 

 

Supplementary Table 10. Associations of lead polymorphisms at the 53 loci in 

subcutaneous adipose tissue eQTL datasets. 

(see Supplementary Table Excel file) 

 

Supplementary Table 11. DEPICT annotation of putative effector genes. 

(see Supplementary Table Excel file) 

  



 

 

Supplementary Table 12. Associations at the PIK3R1 locus. Comparison between 

phenotypic association patterns of the common single nucleotide polymorphism rs4976033 

(effect allele: G; minor allele: G; minor allele frequency: 49.6%) at the PIK3R1 locus (this 

study) and of rare loss-of-function mutations in PIK3R1 (literature). 

 

Phenotype 

N of individuals 

or N of cases / N 

of controls 

Beta in SDs 

or ln(OR) 

per G allele 

of rs4976033 

P-Value 

Association of rare 

loss of function 

mutations 

Pubmed ID for 

rare loss-of-

function 

mutation 

association 

Height 358,297 
-0.003 

(0.0027) 
0.32 Reduced 

26497935; 

23810378; 

23810379; 

23810382 

Body mass index 447,441 
-0.006 

(0.0026) 
0.02 Reduced* 

26497935; 

23810378; 

23810379; 

23810382 

Body fat percentage 123,206 
-0.020 

(0.0033) 
3.04E-09 

Lipoatrophy or 

lipodistrophy* 

26497935; 

23810378; 

23810379; 

23810382 

Waist-to-hip 

circumference 
337,859 

-0.003 

(0.0027) 
0.27 N/A  

LDL cholesterol 172,987 
-0.001 

(0.0040) 
0.87 Normal* 23810379 

HDL cholesterol 187,060 
-0.021 

(0.0037) 
6.42E-08 Normal° 23810379 

Triglycerides 177,755 
0.0141  

(0.0036) 
0.00020 Normal° 26497935 

Fasting glucose 133,010 
0.002 

(0.0023) 
0.39 Raised° 23810379 

2 hour glucose 42,854 
0.008 

(0.0120) 
0.52 N/A  

Fasting insulin 

adjusted BMI 
108,557 

0.009 

(0.0023) 
0.00013 Insulin resistance* 

26497935; 

23810378 

Type 2 diabetes 
45,836 cases 

230,358 controls 

1.03 

(1.01-1.05) 
0.0022 

High prevalence of 

early onset type 2 

diabetes* 

26497935; 

23810378; 

23810379 

Coronary heart 

disease 

8,660 cases    

47,121 controls 

1.07 

(1.02-1.12) 
0.0080 N/A  

Height data were from a meta-analysis of UK Biobank and GIANT data. 

*Alignment between phenotypes associated with common and rare variants 

°Lack of alignment between phenotypes associated with common and rare variants 

  



 

 

Supplementary Table 13. Association estimates at loci selected for experimental 

validation of putative effector genes in cellular adipogenesis models. 

SNP genomic 

coordinates 

Insulin-

raising 

/ other 

allele 

Putative 

effector 

gene 

Direction of 

association 

with 

expression of 

the  putative 

effector gene 

in 

subcutaneous 

adipocytes 

p-value for 

expression of 

putative 

effector gene 

in 

subcutaneous 

adipocytes 

Beta for hip 

circumference 

in 

standardised 

units  

(p-value) 

OR of 

type 2 

diabetes  

(p-value) 

rs2943645 

Chr2:227099180 
T / C IRS1 

Lower 

expression 
5.2E-09 

-0.014 

(9.4E-07) 

1.09 

(1.1E-17) 

rs7973683 

Chr12:124449223 
C / A CCDC92 

Lower 

expression 
2.1E-29 

-0.014 

(1.3E-06) 

1.03 

(3.7E-03) 

rs7973683 

Chr12:124449223 
C / A DNAH10 

Lower 

expression 
1.9E-08 

-0.014 

(1.3E-06) 

1.03 

(3.7E-03) 

rs9492443 

Chr6:130398731 
C / T L3MBTL3 

Lower 

expression 
9.1E-17 

-0.021 

(1.2E-11) 

1.05 

(3.1E-05) 

rs3822072 

Chr4:89741269 
A / G FAM13A 

Higher 

expression 
7.6E-12 

-0.017 

(5.5E-10) 

1.04 

(1.6E-05) 

Genomic coordinates refer to build 37 (hg19). All association results are aligned to the insulin-raising (risk) 

allele. The co-localisation between association signals for gene expression in subcutaneous adipocytes and 

associations with fasting insulin are discussed in the Supplementary Note. Hip circumference association results 

are from a meta-analysis of the UK Biobank study and of the GIANT consortium. Type 2 diabetes association 

results are from a meta-analysis of DIAGRAM, InterAct and UK Biobank. 

  



 

 

Supplementary Table 14. Characteristics of the participants with individual-level 

genotype data included in this study. 

 

Study Fenland 
EPIC-

Norfolk 
InterAct UK Biobank UKHLS 

Country 
United 

Kingdom 

United 

Kingdom 

Multiple 

European 

countries 

United Kingdom 
United 

Kingdom 

Participants 10,351 9150 15357 111016 5296 

Cases / 

Controls 
N/A N/A 6410 / 8947 4586 / 106430 N/A 

Age 48 (7) 58 (9) 53 (9) 57 (8) 53 (16) 

Female sex, N 

(%) 
5506 (53) 5015 (55) 9162 (60) 58390 (53) 5296 (100) 

Genotyping 

chip 

Affymetrix 

genome-

Wide Human 

SNP Array 

5.0 and  

Affymetrix 

UK Biobank 

Axiom Array 

Affymetrix 

UK Biobank 

Axiom Array 

Illumina 

660w quad 

and Illumina 

CoreExome 

chip 

Affymetrix UK 

Biobank Axiom 

Array 

Illumina 

CoreExome 

Chip 

Imputation 

panel 

1000 

Genomes 

Phase 1v3 

and Phase 3 

1000 

Genomes 

Phase 3 

1000 

Genomes 

Phase 1v3 

1000 Genomes 

Phase 3 plus 

UK10K 

1000 Genomes 

Phase 3 
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Supplementary Figure 1 

Design and scope of the study. 

 



 
 

Supplementary Figure 2 

Design of the study, investigated phenotypes, sources of data and sample size. 

The reported sample size is the maximum available for a given trait or set of traits in this study. *In the study by Knowles and
colleagues (Pubmed ID: 25798622), insulin sensitivity was measured by euglycaemic clamp or insulin suppression test in 2,764
European individuals from four cohorts. Abbreviations: IR, insulin resistance; SNP, single nucleotide polymorphism; FIadjBMI, fasting
insulin levels adjusted for body mass index; TG, triglyceride levels; HDL, high-density lipoprotein cholesterol levels; ISI, insulin 
sensitivity index; DEXA, dual-energy X-ray absorptiometry; BF%, body fat percentage; FPLD1, familial partial lipodystrophy type 1;
MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; GLGC, Global Lipids Genetics Consortium; GIANT, Genetic
Investigation of ANthropometric Traits; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; CARDIOGRAM, Coronary 
ARtery DIsease Genome wide Replication and Meta-analysis; C4D, Coronary Artery Disease Genetics consortium. 



 
 

 

Supplementary Figure 3 

Combined directional Manhattan plots of the association with insulin resistance related phenotypes. 

The figure represents Manhattan plots of the association of single nucleotide polymorphisms with fasting insulin adjusted for body mass 
index (FIadjBMI; Panel A), triglycerides (Panel B) and HDL cholesterol (Panel C). We plotted only variants with FIadjBMI, triglycerides 
and HDL cholesterol (p<0.005 for each phenotype). All associations are represented for the FIadjBMI-raising allele. The 630 alleles 
associated with higher FIadjBMI, higher triglycerides and lower HDL cholesterol are plotted in dark red. The graph also plots 21 variants 
that meet the p-value threshold for the three phenotypes but were not associated in the required direction (grey). For graphic display 
purposes, p-values below 10-20 were represented as 10-20. 



 
 

Supplementary Figure 4 

Flowchart of the identification of insulin resistance loci. 

Numbers refer to single nucleotide polymorphisms. Abbreviations: FIadjBMI, fasting insulin adjusted for body mass index; HDL, high-
density lipoprotein cholesterol; TG, triglycerides; SNP, single nucleotide polymorphism. 



 
 

Supplementary Figure 5 

Associations with insulin resistance phenotypes in an independent dataset. 

The figure reports associations of the genetic scores comprising the 53 or 43 SNPs with fasting insulin adjusted for body mass index, 
triglycerides and HDL cholesterol in up to 6,101 participants of the Fenland study who were not included in any of the discovery efforts
used for the identification of the 53 loci. Squares indicate the central estimate of the beta coefficient; error bars the 95% confidence 
interval. Abbreviations: N, number of participants; FIadjBMI, fasting insulin adjusted for body mass index; HDL, high-density lipoprotein; 
SD, standard deviation. 



 
 

Supplementary Figure 6 

Associations with glycaemic, anthropometric traits and disease endpoints at the 53 genomic loci. 

The heatmap represents Z-scores for the association of the lead insulin raising allele at each locus. Loci are ranked on the basis of
their Z-score for fasting insulin (largest to smallest). With the exception of fasting insulin, none of the association analyses was adjusted 
for body mass index. Abbreviations: N, maximum sample size; FIadjBMI, fasting insulin adjusted for body mass index; HDL, high
density lipoprotein cholesterol; BMI, body mass index; WHR, waist-to-hip ratio; CHD, coronary heart disease; T2D, type 2 diabetes. 
Colour scale: red indicates positive associations for the insulin-raising allele at each locus, while blue indicates negative associations.
Asterisks indicate known loci for the traits, i.e. those for which our lead SNP is within 500 kb either side of a lead SNP from the largest 
GWAS of that trait. 



 
 

 

Supplementary Figure 7 

Associations of the genetic scores comprising the 53 or 43 SNPs with glycaemic and anthropometric traits in large-scale meta-analyses 
and in the Fenland study. 

Panel A shows the association of the genetic scores with anthropometric and glycaemic traits in meta-analyses of genetic association 
studies. Body mass index, waist-to-hip ratio, waist and hip circumference data are from the GIANT consortium and the UK Biobank 
study. Body fat percentage data are from the UK Biobank, EPIC-Norfolk and Fenland studies. Fasting plasma glucose, 2 hour glucose
and HbA1c data are from the MAGIC consortium. Leg fat mass data are from the EPIC-Norfolk and Fenland studies. Squares with error 



 
 

bars represent the per-allele beta coefficients in standard deviation units and their 95% confidence intervals. Panel B shows the
association with the same traits in participants of the Fenland study not included in discovery efforts which contributed to the 
identification of the 53 loci. Since HbA1c has been measured only in a subset of Fenland, the HbA1c analysis includes also individuals 
from the InterAct study subcohort who did not take part in discovery efforts which contributed to the identification of the 53 loci. Squares
with error bars represent the per-allele beta coefficients in standard deviation units and their 95% confidence intervals. Red and blue
squares represent results of the 53-SNP and 43-SNP genetic scores, respectively. None of the results presented in the figure is
adjusted for body mass index. Abbreviations: N, number of participants; SD, standard deviation; BMI, body mass index; WHR, waist-to-
hip ratio; FPG, fasting plasma glucose. 



 
 

Supplementary Figure 8 

Associations of the 53-SNP genetic score with detailed anthropometric variables from dual energy X-ray absorptiometry. 

The figure represents the association of quintiles of the 53-SNP genetic score with the absolute values of compartmental and total fat
mass. Data are from 9,747 participants of the Fenland study. The Fenland population was divided into quintiles of the distribution of the 
genetic score and each quintile was compared with the bottom (reference category). Squares with error bars represent the beta
coefficients in grams for individuals in the exposure category compared with the reference category and their 95% confidence intervals.

	



 
 

 

Supplementary Figure 9 

Associations of the rs4976033-G allele near PIK3R1 with continuous metabolic traits and cardiometabolic disease endpoints. 

Panel A represents associations with continuous traits, while Panel B those with disease endpoints. Squares with error bars represent 
the beta coefficients (Panel A) or odds ratios (Panel B) and their 95% confidence intervals. Abbreviations: HDL, high density lipoprotein;
LDL, low density lipoprotein; BMI, body mass index; WHR, waist-to-hip ratio; FIadjBMI, fasting insulin adjusted for BMI; FPG, fasting 
plasma glucose; 2hr glucose, glucose at two hours during an oral glucose challenge; SD, standard deviation; OR, odds ratio. 

	



 
 

Supplementary Figure 10 

Associations of functional variants in LPL with cardiometabolic traits and disease endpoints. 

Panel A represents the association of the gain-of-function p.Ser447* (rs328; left) and of the loss-of-function p.Asp36Asn (rs1801177;
right) in LPL with lipid levels, anthropometric traits, liver markers and glycemic traits. Panel B represents the association of the two 
variants with the risk of coronary heart disease (from the Myocardial Infarction Genetics and CARDIoGRAM Exome Consortia
Investigators; PubMed ID: 26934567)5 and that of type 2 diabetes. Squares with error bars represent the beta coefficients (Panel A) or 
odds ratios (Panel B) and their 95% confidence intervals. Abbreviations: HDL, high density lipoprotein; LDL, low density lipoprotein; 
BMI, body mass index; WHR, waist-to-hip ratio; VAT, visceral adipose tissue; ALT, alanine aminotransferase; GGT, gamma-glutamyl 
transferase; FIadjBMI, fasting insulin adjusted for BMI; FPG, fasting plasma glucose; 2hr, glucose at two hours during an oral glucose 
challenge; SD, standard deviation; OR, odds ratio. 

	



 
 

Supplementary Figure 11 

Mechanistic hypothesis for the implication of putative effector genes in the observed associations and selection of genes for
experimental validation in cellular models of adipogenesis. 

In Panel C, numbers refers to loci meeting certain selection criteria. *We did not take forward the KLF14 gene to experimental 
validation because previous studies about the role of the gene in metabolic disease suggest complex aetiologic mechanisms at this 
locus including a possible parent-of-origin effect.3 



 
 

Supplementary Figure 12 

Associations with fasting insulin adjusted for body mass index (FIadjBMI), body mass index (BMI), or fastin insulin (FI) of the 53
polymorphisms identified in this study. 

Panel A shows the association of the 53 lead polymorphisms from our study with FIadjBMI as a function of the association with BMI. 
There was no clear bias in the association with FIadjBMI (linear regression between beta coefficients of 53 polymorphisms, p=0.26). 
Panel B depicts the association with FI (unadjusted for BMI) of the lead 53 polymorphisms as a function of the association with 
FIadjBMI. The line of fit was aligned with the line of equality consistent with no bias. In Panel A, the dark red line and surrounding areas 
represent the lines of fit with 95% confidence areas. The dashed grey line in Panel B represents the line of equality. Data about fasting 
insulin associations is from the MAGIC consortium; data about BMI associations is from the GIANT consortium. 

	



 
 

Supplementary Figure 13 

Scatter plot matrix of the top ten genetic principal components in FPLD1 women and UKHLS control women. 
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