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Abstract 

 

IMMUNOTHERAPY OF CANCER: REPROGRAMMING TUMOR/IMMUNE 

CELLULAR CROSSTALK TO IMPROVE ANTI-TUMOR EFFICACY 

   

By Kyle Kristopher Payne, PhD 

A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of 

Philosophy at Virginia Commonwealth University 

Virginia Commonwealth University, 2015 

 

Director: Masoud H. Manjili, DVM, PhD 

Associate Professor, Department of Microbiology and Immunology 

School of Medicine 

 

Immunotherapy of cancer has been shown to be promising in prolonging patient survival. 

However, complete elimination of cancer and life-long relapse-free survival remain to be major 

challenge for anti-cancer therapeutics. We have previously reported that ex vivo reprogramming 

of tumor-sensitized immune cells by bryostatin 1/ionomycin (B/I) and the gamma-chain (γ-c) 

cytokines IL-2, IL-7, and IL-15 resulted in the generation of memory T cells as well as CD25+ 

NKT cells and CD25+ NK cells. Adoptive cellular therapy (ACT) utilizing these reprogrammed 
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immune cells protected FVBN202 mice from tumor challenge, and overcame the suppressive 

functions of myeloid-derived suppressor cells (MDSCs). We then demonstrated that the presence 

of CD25+ NKT cells was required for anti-tumor efficacy of T cells as well as their resistance to 

MDSCs. Similar results were obtained by reprogramming of peripheral blood mononuclear cells 

(PBMC) from patients with early stage breast cancer, demonstrating that an increased frequency 

of CD25+ NKT cells in reprogrammed immune cells was associated with modulation of MDSCs 

to CD11b-HLA-DR+ immune stimulatory cells. Here, we tested the efficacy of immunotherapy 

in a therapeutic setting against established primary breast cancer (Chapter One), experimental 

metastatic breast cancer (Chapter Three) as well as against minimal residual disease (MRD) in 

patients with multiple myeloma (Chapter Two). We evaluated the ability of reprogrammed 

immune cells, including CD25+ NKT cells, to convert MDSCs to myeloid immune stimulatory 

cells, in vivo; this resulted in the identification and characterization of a novel antigen presenting 

cell (APC). These novel immune stimulatory cells differed from conventional APCs, including 

dendritic cells (DCs) and macrophages. We have also demonstrated that enhancing 

immunogenicity of mammary tumors by treatment with Decitabine (Dec) along with overcoming 

MDSCs by utilizing reprogrammed T cells and NKT cells in ACT prolongs survival of animals, 

but fails to eliminate the tumor. However, targeting cancer during a setting of MRD, when tumor 

cells are dormant, results in objective responses as evidenced in our multiple myeloma studies. 

This suggests that targeting breast cancer with immunotherapy following conventional therapies, 

in a setting of residual disease when tumor cells are dormant, may be effective in eliminating 

such residual cells or maintaining dormancy and extending time-to-relapse for breast cancer 

patients.  
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PREFACE 

Despite tumor immune surveillance, individuals with an intact immune system still develop 

cancer. This is due to escape mechanisms developed by tumors under pressure from the host’s 

immune system. Therefore, modifying tumor cells and reprogramming tumor-sensitized immune 

cells may establish a novel crosstalk between tumor cells and cells of the immune system which 

could lead to tumor rejection. The use of demethylating drugs such as Azacitidine (Aza) or Dec 

can induce the expression of highly immunogenic cancer testis antigen (CTAs) in the tumor, 

thereby increasing the immunogenicity of tumor cells and rendering them more vulnerable to 

immune recognition and attack. We have also established an antigen-free ex vivo protocol for 

reprogramming and expansion of tumor-sensitized immune cells by using bryostatin 

1/ionomycin (B/I) and common gamma chain cytokines, IL-2, IL-7, and IL-15. Such 

reprogrammed immune cells consisted mainly of memory T cells and CD25+ NKT cells, which 

overcame MDSC suppression. Previous work demonstrated that ACT utilizing reprogrammed 

immune cells protected animals from primary tumor challenge. Here, we sought to determine the 

therapeutic efficacy of ACT against established primary breast cancer. In Chapter One, we 

evaluated ACT with or without Dec against established primary mammary carcinoma. This 

strategy failed to eliminate established tumors. In Chapter Two, we participated in a Phase II 

randomized clinical trial using Aza combined with an immunomodulator Revlimid (Rev) and 

ACT in patients with multiple myeloma who harbored MRD. This strategy was effective in 

generating responses against multiple myeloma. In Chapter Three, we tested the therapeutic 

efficacy of ACT with or without Dec against experimental metastatic mammary carcinoma. 

These studies identified novel APCs, as well as chemotherapy-induced dormant tumor cells that 

were sensitive to immunotherapy. 



 

1 

 

Chapter One 

Introduction 

The role of the immune system in maintaining equilibrium or eliminating neoplastic cells has 

become appreciated within the last four decades. Anti-tumor immune surveillance is supported 

by observations of spontaneous tumor regression associated with anti-tumor immune function 

(1), as well as the observation of a higher incidence of virally induced cancers and a worse 

prognosis for other cancers in immunocompromised or immunodeficient patients (2, 3). Such 

observations have incited the development of immune-based therapies for use against cancer in 

order to harness naturally occurring anti-tumor immune response. 

 

Status of current cancer therapeutics 

Despite advances in conventional cytotoxic therapies of early-stage breast cancer (4, 5) there 

remains no therapeutic strategy that can ensure relapse-free survival. Furthermore, studies have 

shown that 20% of clinically disease-free early-stage breast cancer patients relapse within 10 

years after conventional therapies (6); indeed, most cancer-related deaths within the United 

States are attributed to relapse (7). Thus, there is an urgent need to develop more effective 

therapies to overcome breast cancer relapse and to treat the advanced stages of the disease. To 

this end, immunotherapy emerges as a promising strategy for the prevention of tumor relapse, 

when combined with conventional therapies. 

Thus far, advances in the immunotherapy of cancer have also been met with a number of 

setbacks. Several vaccination strategies used against breast cancer have been successfully 

employed to induce tumor-specific CD8+ and CD4+ T-cell responses; however, such 
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immunological responses have rarely been potent enough to achieve objective results (8-10). 

Additionally, it has been demonstrated by several groups that adoptive cellular therapy (ACT) 

directed against highly immunogenic melanoma-associated antigens results in objective 

responses in animal models as well as in some melanoma patients (11, 12). ACT has also been 

tested against breast cancer both in preclinical and clinical studies (13, 14); however, unlike 

melanoma, ACT has not produced promising results in breast cancer patients and has only 

displayed effectiveness in animal models in prophylactic settings (15, 16), rather than against 

well-established, vascularized tumors. Such failure has been attributed, in part, to (i) the lack of a 

robust antitumor immune response as a result of the expression of weakly immunogenic tumor 

antigens coupled with the presence of low frequency and low affinity T cells and (ii) the 

suppression of antitumor immune responses though the activity of immunosuppressive 

mechanisms. Indeed, distant recurrence of breast cancer may occur even in the presence of 

tumor-specific immune responses. The ability to overcome these barriers will likely improve the 

efficacy of immunotherapy directed against cancer.  

 

Immune suppression in the tumor microenvironment 

The immunosuppressive tumor microenvironment (TME) has come to be appreciated as a major 

facilitator in the progression of solid tumors. It is now clear that the escape of malignant cells 

from immune destruction is due in part to immunosuppressive mechanisms within the TME, as 

reviewed by Hanahan and Coussens (17). The expression of immunoregulatory molecules, such 

as cytotoxic T lymphocyte associated protein 4 (CTLA-4) and programmed cell death protein 1 

(PD-1) as well as the ectoenzyme, CD73, inhibits the proliferation and function of conventional 

T cells with anti-tumor activity (18, 19). Furthermore, immunosuppressive cells such as 
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alternatively activated M2 macrophages, type II NK cells, and regulatory T cells have been also 

been demonstrated to antagonize tumor immunosurveillance (20-24). Results from clinical 

studies of  breast cancer patients indicate that another critical regulator of tumor 

immunosurveillance, the myeloid-derived suppressor cell (MDSC), was found to be the most 

abundant type of suppressor cell (25, 26) and thus represent a major hurdle in overcoming 

antitumor immune suppression. MDSCs play a major role in the suppression of anti-tumor 

immune responses as the failure of endogenous anti-tumor immune responses results, in part, 

from the increased activity of these cells (27-29).  MDSCs consist of immature cells of myeloid 

origin that exert suppression of T cells via modulation of the local T-cell environment, direct 

cell-to-cell contact, as well as by their ability to generate inducible Tregs (15, 30-33). These cells 

have been found in tumor-bearing mice as well as cancer patients and have been shown to 

possess multiple mechanisms to suppress the antitumor immune response (34, 35). Such 

responses include disrupting T cell receptor (TcR) antigen recognition and T-cell mediated 

interferon gamma (IFN-Ȗ) production (36, 37), depletion of essential amino acids within the 

tumor microenvironment (38), and overproduction of reactive oxygen species (ROS) (39). 

Murine MDSCs are defined as coexpressing Gr-1 and CD11b, with two subsets commonly being 

described: granulocytic (CD11b+Ly-6G+Ly-6C-) and monocytic (CD11b+Ly-6G-Ly-6C+) (40). 

Human MDSCs, on the other hand, have been difficult to identify as initial studies revealed that 

these cells express varied phenotypes and suppressive patterns (34). It is now regarded, however, 

that human MDSCs fall into two main subsets: a monocytic population characterized by 

expression of CD14 and a granulocytic population characterized by CD15 expression; both 

subtypes have been reported to express the common myeloid markers CD11b and CD33, with 

minimal expression of myeloid maturation markers such as HLA-DR (41). The accumulation of 
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these cells in association with cancer development is corroborated by experimental mouse 

models (15, 42), and human (25, 34, 43) studies, indicating that MDSCs develop as a function of 

tumor progression. For instance, our group has previously reported that FVBN202 mice, which 

overexpress the rat neu oncogene in their mammary glands, develop atypical ductal hyperplasia 

(ADH) and ductal carcinoma in situ (DCIS) in mammary epithelial cells prior to the formation of 

spontaneous mammary tumors (44). DCIS of the breast is conventionally regarded as a precursor 

of invasive breast cancer, and ADH is a risk factor for the development of the disease (45, 46). 

Compromised anti-neu immune responses occur as a result of the emergence of such 

premalignant events which are characterized by an accumulation of MDSCs in the blood, bone 

marrow, secondary lymphoid tissues, and within tumor lesions due to an increased production of 

tumor-derived soluble factors (44, 47-51). Such findings provide evidence that MDSCs function 

as potent inhibitors of antitumor immunity in breast cancer models. Likewise, human MDSCs 

have been observed to negatively regulate both adaptive and innate immunity during cancer 

development and progression, with accumulation having been observed in peripheral blood and 

lymphoid tissues as well as draining tumor sites of cancer-bearing patients (40). In addition to 

breast cancer, the accumulation of MDSCs has been observed in hepatocellular, pancreatic, 

esophageal, and colorectal cancers (35). 

Thus, MDSC accumulation is paramount in the ability of cancer to evade effective immune 

responses; devising strategies to overcome MDSCs is critical to improving effective anti-tumor 

immunity. 

 

Modulation of the TME to overcome tumor-induced immune suppression 
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As MDSCs are immature cells of myeloid lineage, one may hypothesize that providing the 

correct signal to these cells may support their maturation into cells which may support anti-tumor 

function, such as dendritic cells (DCs) or M1 macrophage subsets. Indeed, studies in animal 

models suggest that activated NKT cells may have a role in modulating the immunosuppressive 

TME by promoting the conversion of MDSCs into DCs (16, 52, 53), yielding enhanced, rather 

than suppressed anti-tumor immune responses, while also potentially decreasing the pool of 

environmentally induced Tregs (31-33).  Our group has recently observed that activated CD25
+
 

NKT cells can promote the maturation of human MDSCs in vitro, which renders them 

immunostimulatory in early stage breast cancer patients (54). The physiological role of NKT 

cells in tumor immunity is yet to be fully defined, but it appears a primary function of these cells 

is to activate DCs to promote antigen-specific T-cell responses (55-57). Furthermore, the ability 

of NKT cells to direct myeloid lineage cellular differentiation is becoming apparent. Hedge and 

colleagues (58) have demonstrated the ability of NKT cells to induce the differentiation of 

monocytes into DCs as a result of secretion of granulocyte–macrophage colony-stimulating 

factor and IL-13 and, similarly, others have reported on the ability of innate immune cells to 

induce DC maturation (59-61). 

NK cells, traditionally considered to function as effector cells in the innate arm of the immune 

system, have also recently been shown to play immunoregulatory ‘helper’ functions through an 

ability to activate and enhance the ability of DCs to produce proinflammatory cytokines and to 

stimulate Th1 and cytotoxic T lymphocyte responses of tumor-specific CD4
+
 and CD8

+
 T cells 

(62). Furthermore, Wong et al. (63) have recently described an ability of IL-18 primed human 

NK cells to promote DC activation and DC-mediated induction of type-1 immune responses 

against cancer via a chemokine-dependent mechanism. Similarly, a study by Srivastava et al (64) 
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has demonstrated that cetuximab, a chimeric monoclonal antibody that targets the EGF receptor 

and is approved for use in colorectal as well as head and neck cancers, also functions to activate 

NK cells and support dendritic cell maturation through NKG2D/MICA binding, with subsequent 

priming of tumor-antigen specific T cells. Such findings emphasize a role for NK cells 

functioning in a ‘helper’ role in which DCs are activated and result in the priming of anti-tumor 

T-cell responses.  

Much attention in the field of cellular immunotherapy of cancer has recently focused on the use 

of genetic engineering of the T cell receptor to improve T cell specificity for MHC class I 

restricted tumor antigen peptides (65), or the use of chimeric antigen receptor (CAR) modified T 

cells to target MHC-unrestricted native cell surface antigens (66). These approaches, which 

consist of a purified T cell product, have had some success in the treatment of hematological 

cancer, but have been of limited therapeutic efficacy in the treatment of solid cancer (67-72). The 

gold standard for ACT of solid cancer remains the use of tumor-infiltrating lymphocytes (TIL). 

TIL are harvested from surgically excised tumor and expanded ex vivo in the presence of IL-2. 

This technique was developed by Steven Rosenberg and colleagues in the late 1980s (73, 74), 

and has resulted in overall response rates of 48–72% for the treatment of advanced melanoma 

(75, 76). It is important to appreciate that the cellular composition of TIL is most certainly 

enriched with effector lymphocytes beyond traditional α/ȕ T cells. While CD4+
 and CD8

+
 T cells 

do indeed comprise a large percentage of the TIL product, NK cells, NKT cells as well as Ȗ/δ T 

cells have also been detected (77-79). Given the superior responses observed using TIL, rather 

than purified T cells in solid cancers (80), such data must lead us to pursue an understanding of 

the mechanistic crosstalk among the various lineages of leukocytes in order to manipulate that 

communication network to lead to a more effective eradication of tumor cells. 
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Therefore, developing a cellular based immunotherapy for cancer which includes T cells as well 

as NK and NKT cells will likely lead to the orchestration of more effective activation of DCs and 

other APCs which may further promote endogenous T cell responses in addition to the 

transferred T cells and may have the benefit of reducing the frequency of MDSCs. 

 

ACT of breast cancer utilizing reprogrammed memory T cells and CD25+ NKT cells  

Our group has recently observed that the expression of molecules involved in the activation 

signaling of NK cells as well as NK cell:target interactions is increased in breast cancer patients 

with a favorable prognosis (81). Additionally, we have demonstrated that immune function genes 

involved in the crosstalk between adaptive and innate immune responses were exclusively 

upregulated in breast cancer patients with relapse-free survival (82). These finding suggest that 

innate immune signals within the TME may function to support adaptive anti-tumor immune 

responses. 

Therefore, a strategy to enhance the cross-talk between innate and adaptive immune cells is one 

of immune cell reprogramming, ex vivo, and infusing these cells as ACT in order to increase the 

number of functionally superior tumor-sensitized T cells as well as to induce the activation of 

NKT cells to provide signals to modulate myeloid cells in secondary lymphoid tissues and the 

TME.  Immune cell reprogramming requires activation of antigen experienced immune cells, 

followed by phenotypic manipulation using Ȗ-c cytokines. 

 

Activation of antigen-sensitized T cells: An antigen-independent protocol using Bryostatin 

1 and Ionomycin 
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Circulating tumor-reactive T cells have been identified in the peripheral blood as well as draining 

lymph nodes of cancer patients (83-88) and, therefore, represent a potential source of cells with 

endogenous reactivity against tumor-associated antigens (TAAs) for use in ACT. Stimulation of 

CD3 and CD28 using beads or monoclonal antibodies without the presence of antigen has been 

widely used as a method to induce T-cell activation and expansion, which may then be used for 

ACT (89-92). This method, however, leads to nonspecific polyclonal T-cell proliferation, and 

depending upon the anatomical location from which the cells were harvested, may lead to 

insufficient frequencies of expanded tumor-sensitized T cells for use in ACT. As an alternative 

approach, preclinical studies have reported that the combined use of the pharmacological agents 

bryostatin 1 and ionomycin (B/I) selectively stimulates tumor-sensitized T cells in vitro, without 

requiring the presence of antigen; lymphocytes from sarcoma-bearing mice activated with B/I 

and expanded with IL-2 underwent tumor-specific T-cell expansion by orders of magnitude (93). 

Bryostatin 1 functions by activating T cells through protein kinase C (PKC) activity (94), which 

leads to the secretion of IL-2 and the generation of a proliferative response when combined with 

ionomycin (95). Naıve T cells, in contrast to primed T cells, are impaired in TcR downregulation 

upon exposure to the classical PKC activator phorbol 12, 13-dibutyrate (96), suggesting PKC 

activators may differentially regulate naive and primed T cells. In fact, TcR downregulation has 

been attributed to PKC-θ activity in primed T cells (97). Von Essen et al. (96) have demonstrated 

that the majority of PKC-θ exists as a high-molecular disulfide-linked inactive form in the 

plasma membrane of naıve T cells, whereas primed T cells express an active form of PKC-θ; 

activation of PKC-θ is redox dependent and requires de novo synthesis of the major redox 

regulator glutathione during T-cell activation. Furthermore, differential localization of PKC-θ 

occurs following activation of primed T cells and naıve T cells (98, 99). PKC-θ has also been 
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implicated in having a central role in the anti-tumor activity of NK cells (100). Such observations 

underscore the ability of PKC activators to elicit distinct TcR signaling in naıve versus primed T 

cells. This suggests that the activity of bryostatin 1 preferentially mimics TcR signaling in 

primed T cells, theoretically activating T cells with specificity for several different TAAs 

expressed within the same tumor, and may stimulate innate immune cells; this results in their 

collective activation and subsequent responses to treatment with cytokine cocktails as discussed 

below. Importantly, it has been reported that in vivo administration of bryostatin 1 does not result 

in high-grade toxicities (101). 

 

Immune cell phenotypic manipulation using the γ-chain cytokines 

The selective stimulation of primed T cells and innate immune cells isolated from peripheral 

blood or draining lymph nodes with B/I followed by ex vivo culture with homeostatic cytokines 

is a potential approach to 'reprogram' lymphocytes to elicit more efficacious anti-tumor immune 

responses upon reinfusion during ACT. Lymphocyte homeostasis is mediated in large part by the 

activity of Ȗ-c dependent signaling. The Ȗ-c cytokines are so named due to their sharing of the 

cytokine receptor Ȗ chain. The Ȗ chain is coupled with cytokine-specific receptor subunits which 

then compose the receptor motif. In particular, the Ȗ-c cytokines, IL-2, IL-7 and IL-15 have been 

widely reported to support memory T-cell homeostasis as well as enhancement of NK cell 

function and terminal NKT-cell maturation (102-106). Others have previously reported that T 

central memory (Tcm) cells are more effective than the T effector phenotype in generating long-

lasting protection against tumor cells in vivo (107, 108). Importantly, our group has made similar 

observations in the FVBN202 mouse model using ACT which contained an enriched component 

of Tcm cells that had been reprogrammed using B/I and the Ȗ-c cytokines IL-2, IL-7 and IL-15 
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protected animals from tumor challenge as well as tumor rechallenge two months later, 

demonstrating the functionality of the ex vivo reprogrammed memory T cell response (12, 16, 

109).  

Importantly, we have previously demonstrated that immune cell activation and phenotypic 

reprogramming using B/I and Ȗ-c cytokines also robustly increased the frequency of CD25
+
 NKT 

cells which rendered T cells resistant to MDSC suppression in in vitro studies in both mouse 

models as well as breast cancer patients (16, 54), and induced in vitro maturation of human 

MDSCs (54).  

These data suggest that signals provided by CD25
+
 NKT cells may function in the secondary 

lymphoid tissue and the TME of tumor-bearing hosts to support adaptive immune responses by 

modulating cells of myeloid lineage. We therefore hypothesized that ACT using both Tcm and 

CD25
+
 NKT cells may therefore have therapeutic efficacy against primary breast cancer.  

 

Epigenetic enhancement of tumor immunogenicity: Dec as an in situ vaccine 

An additional barrier to successful immunotherapy of breast cancer is the weak immunogenicity 

of tumor cells, for example, expression of tumor associated antigens to which the immune 

system is tolerant. Therefore, improving the immunogenicity of breast tumor cells is essential to 

improving tumor immunotherapy. To this end, in situ induction of foreign-like antigens, such as 

cancer testis antigens (CTAs), to which adaptive immunity is not tolerized, is a promising option. 

CTAs are highly immunogenic with no natural self-tolerance due to the observation that they are 

normally only expressed during embryonic development; after birth, expression is generally 

limited to immunologically privileged germ cells and the placenta (110). Aberrant CTA 
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expression was first described in melanoma; as such, this expression was found to generate 

CTA-specific cytotoxic T-cell responses (111). Recently, it was reported that treatment of 

metastatic melanoma with autologous CD4+ T cells specific for the CTA, NY-ESO-1, mediated 

a durable clinical remission (112). In addition to melanoma, CTA expression has also been 

observed in hematological malignancies (113) as well as solid tumors, including breast cancer 

(114, 115). Furthermore, CTA expression in breast cancer has been shown to elicit a broad range 

of cellular and humoral immune responses (114, 116, 117); both CD8+ T cell and CD79+ B cell 

infiltration has been observed in primary and metastatic NY-ESO-1 expressing breast cancer 

(118). Of note, a significantly elevated expression of NY-ESO-1 and MAGE-A was detected in 

triple negative breast cancers (119), which therefore represent antigenic targets in an otherwise 

perceived immunologically refractory breast cancer subtype. 

The expression of CTAs is normally silenced by methylation within the promoter region of these 

genes. Methylation at the C-5 position of cytosine bases within DNA is a covalent chemical 

modification which characterizes a key, biologically functional, epigenetic modification of the 

animal genome (120). This action primarily occurs at CpG dinucleotides in mammals, where 

DNA-methyltransferases (DNMTs) mediate the transfer of methyl groups to cytosine, thereby 

generating 5-methylcytosine (5mC) that has been shown to play a critical role in cellular protein 

expression by transcriptional silencing of genes (121). Aberrant CTA expression likely occurs 

due to epigenetic molecular alterations which arise during tumor progression; cancer cells 

display drastic changes in DNA methylation status, typically exhibiting global DNA 

hypomethylation as well as region-specific hypermethylation (122), resulting in irregular 

expression of CTAs.  
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While CTAs are an attractive target, the aberrant expression of these proteins within a 

heterogeneous tumor may limit the efficacy of any CTA-specific immunotherapy to only those 

tumor clones which are CTA-positive. Therefore, in order to induce and/or increase expression 

of CTAs to function as target antigens, it is possible to modulate the tumor epigenome to initiate 

the cellular CTA transcriptional program; such an approach will serve to impart a more 

immunogenic tumor cell phenotype. Aza and Dec are both hypomethylating agents employed in 

epigenetic therapy to modify cellular methylation patterns; both of these agents have been 

approved for clinical use in the treatment of myelodysplastic syndrome. Aza and Dec function as 

cytosine analogs, which lead to their incorporation into newly synthesized DNA strands during S 

phase of the cell cycle; these agents have been shown to induce and/or increase the expression of 

various CTAs in a variety of in vitro and in vivo tumor models (113, 116-118). Both Aza and 

Dec have demonstrated the ability to induce the expression of CTAs, as well as the tumor 

suppressor gene p53 (123) and the death receptor Fas (124) on tumor cells. These are attributed 

to their capacity to function as potent DNMT inhibitors through the formation of a covalent 

complex with a cysteine residue at the active site of DNMT1, which therefore results in CpG 

island demethylation during cellular proliferation. This, in turn, results in hypomethylation 

within the promoter of tumor suppressor genes as well as highly immunogenic CTAs (120, 125-

127), thereby rendering tumor cells susceptible to CTA-reactive immune responses and 

potentially reducing the proliferative capacity of tumor cells by restoring p53 expression. Others 

have demonstrated the feasibility to induce CTA expression in vivo using Dec in the 4T1 model 

of murine breast carcinoma, resulting in greater tumor cell cytotoxicity upon treatment with 

CTA-specific T cells (128).  
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Dec is a particularly attractive option to induce CTA expression as it functions as a prodrug 

which requires activation by deoxycytidine kinase (DCK), an enzyme preferentially expressed in 

tumor cells and myeloid cells. Thus, the effects of Dec are likely tumor specific, thus protecting 

T and B cells from the potentially deleterious demethylating effects of this agent. In addition, 

DCK has been found to be overexpressed in poor outcome breast cancer (129), suggesting that 

epigenetic therapy to induce CTA expression may prove to be an efficacious approach in breast 

cancer patients with poor prognosis. 

The aim of Chapter One was to determine the ability of ACT to induce regression of established 

breast cancer in the FVBN202 mouse model by utilizing reprogrammed immune cells which 

were resistant to MDSCs. Induction of CTAs in these tumors and reprogramming CTA-

sensitized immune cells was tested to determine the ability of CTA-targeted cellular therapy to 

enhance the response to ACT.  
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MATERIALS AND METHODS 

 

Mouse model 

FVBN202 transgenic female mice (The Jackson Laboratory; Bar Harbor, ME) were used 

between 8 and 12 weeks of age throughout these experiments. These mice overexpress non-

mutated, non-activated rat neu transgene under the regulation of the mouse mammary tumor 

virus promoter (130). These mice develop premalignant mammary hyperplasia similar to ductal 

carcinoma in situ prior to the development of spontaneous carcinoma (44). Premalignant events 

in FVBN202 mice include the accumulation of endogenous MDSCs (44). These studies have 

been reviewed and approved by the Institutional Animal Care and Use Committee at Virginia 

Commonwealth University.  

 

Tumor cell lines 

The neu overexpressing mouse mammary carcinoma (MMC) cell line was established from a 

spontaneous mammary tumor harvested from FVBN202 mice. Tumor cells were maintained in 

RPMI 1640 supplemented with 10% FBS.  

 

Ex vivo reprogramming and expansion of splenocytes 

FVBN202 transgenic mice were inoculated in the mammary fat pad with 3 × 10
6
 MMC cells. 

Tumor growth was monitored by digital caliper, and tumor volumes were calculated by volume 

(v) = (L [length] × W [width]
2
)/2. As previously described (16, 54), splenocytes were harvested 

21–β5 days after tumor challenge, when the tumor had reached ≥ 1000mm3
. Splenocytes were 
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then cultured in complete medium (RPMI 1640 supplemented with 10 % FBS, L-glutamine 

(2 mM), 100 U/ml penicillin, and 100 μg/ml Streptomycin) and were stimulated with Bryostatin 

1 (2 nM) (Sigma, Saint Louis, MO), Ionomycin (1 μM) (Calbiochem, San Diego, CA), and 80 

U/ml of IL-2 (Peprotech) for 16–18 h. Lymphocytes were then washed thrice and cultured at 10
6
 

cells/ml in complete medium with IL-7 and IL-15 (20 ng/ml, Peprotech, Rocky Hill, NJ). After 

24 h, 20 U/ml of IL-2 was added to the complete medium. The following day, the cells were 

washed and cultured at 10
6
 cells/ml in complete medium with 40 U/ml of IL-2. After 48 h, cells 

were washed and cultured at 10
6
 cells/ml in complete medium with 40 U/ml of IL-2. Twenty-

four hours later, lymphocytes were washed and cultured at 10
6
 cells/ml in complete medium with 

40 U/ml of IL-2. Lymphocytes were harvested 24 h later on the sixth day and were then either 

used for in vitro studies or in vivo as ACT.  

 

Adoptive cellular therapy 

Twenty-four hours prior to ACT, FVBN202 mice were injected i.p. with CYP (100 mg/kg) to 

induce lymphopenia. Individual groups of mice were challenged intradermally with 3 x 10
6 

MMC cells. Individual groups of mice then received reprogrammed splenocytes i.v. at a dose of 

70 × 10
6
/mouse once the tumor became palpable (50-70mm

3
)  (+ACT), or remained untreated 

(Control). 

 

Characterization of splenocytes  

Spleens of FVBN202 mice bearing primary tumors that served as donors of ACT were harvested 

when the tumor was ≥ 1000mm3
, and were then homogenized into a single cell suspension as 

previously described (16); splenocytes were then characterized using flow cytometry on day 0, 
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day 1 and day 6 of the expansion and reprogramming procedure. Reagents used for flow 

cytometry: anti-CD16/32 Ab (93), FITC-CD3 (17A2); FITC-CD11b (M1/70); PE-GR-1 (RB6-

8C5); PE-CD25 (3C7); Allophycocyanin-CD49b (DX5); Allophycocyanin-CD62L (MEL-14);  

PercP/CY5.5-CD4 (GK1.5); PE/CY7-CD8α (5γ-6.7); all of which were purchased from 

Biolegend (San Diego, CA). All reagents were used at the manufacture’s recommended 

concentration. Cellular staining was performed as previously described by our group (16, 54). 

Multicolor data acquisition was performed using a FACSCanto II (BD Biosciences). Data was 

analyzed using FCS Express v4.07 (De Novo Software; Glendale, CA). 

 

In vitro and in vivo induction of CTA expression in MMC cells and cDNA synthesis 

MMC cells were cultured in the presence of 3µM Dec (Sigma-Aldrich; St. Louis, MO) for 72 

hours. Medium was then removed and cells were washed with PBS, and then treated with 

TRIzol® (Life Technologies) per the manufacturer’s instructions. In vivo, FVBN202 mice 

bearing primary tumor ≥ 1000mm3
 were injected with Dec (2.5mg/kg) once daily for five days. 

Mice were euthanized and tumors were harvested 3 days later, minced, then treated with 

TRIzol® per the manufacturer’s instructions. Contaminate DNA was then removed by Dnase I 

digestion from both the in vitro and in vivo specimens; RNA was then purified, followed by 

cDNA synthesis as previously described (131).  

 

Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) for the detection of CTA 

expression 
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Quantitative reverse-transcriptase PCR was performed in triplicate wells using SensiMix SYBR 

and Fluorescein Kit according to the manufacturer’s procedure (BIOLINE) with the BioRad 

CFX96 Real-Time PCR Detection System. qRT-PCR was performed using primers specific for 

six murine CTAs and murine GAPDH (Table 1). The reaction was initiated by a denaturing 

period of 10 minutes at 95°C, followed by 40 cycles of 95°C for 0:15 minutes, 60°C for 0:30 

minutes, and 72C for 0:15 minutes. Relative CTA expression was computed after normalization 

to GAPDH using the ΔΔCq method.  

 

IFN-γ ELISA 

Splenocytes from FVBN202 mice bearing primary tumors were reprogrammed as described 

above. Reprogrammed immune cells were then cultured in complete medium with irradiated 

(140Gy) MMC cells or irradiated CTA-expressing MMC (as described above) at a 10:1 ratio for 

β0 hours. Supernatants were then collected and stored at −80°C until assayed. IFN-Ȗ was 

detected using a Mouse IFN-Ȗ ELISA kit (BD Biosciences), according to the manufacturer’s 

protocol.  

 

Sample size and power calculation justification for patient CTA expression 

The observed gene expression data were transformed into a natural logarithm for normality. 

Assume that the actual true difference between the two groups (recurrence vs non-recurrence) in 

a gene expression and the actual standard deviation were observed in our preliminary results. 

Also assume that the ratio of the size of the two groups is 1:1. Therefore, by a two-sample z test, 
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the sample size per group and the total sample size (Table 2) are required to gain at least 80% 

power to detect the difference between the two groups at a two-sided significance of 5%.  

 

Clinical specimens 

Tissue specimens had been collected from female breast cancer patients and maintained in the 

VCU Massey Cancer Center Tissue & Data Acquisition and Analysis Core (TDAAC). Frozen 

tissue was used for RNA extraction. These studies have been reviewed and approved by the 

Institutional Review Board (HM10920 and 2471-Tissue Acquisition System for Cancer 

Research) at Virginia Commonwealth University. 

 

Statistical analysis 

Outcomes are summarized by basic descriptive statistics such as mean and standard error of the 

mean (SEM); differences between groups are illustrated using graphical data presented as mean 

± SEM. Statistical comparisons between groups were made using one-tailed and two-tailed 

Student t test per the specific hypothesis. P-value ≤ 0.05 was considered statistically significant. 
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RESULTS 

 

ACT utilizing reprogrammed murine splenocytes which are resistant to MDSCs fails to 

reject established primary tumors in the FVBN202 mouse 

It was demonstrated that tumor-derived factors increase the accumulation of MDSCs (27), 

thereby inhibiting the therapeutic efficacy of anti-tumor immune responses. We have previously 

established an ex vivo protocol for reprogramming tumor-sensitized immune cells in which 

tumor-reactive T cells became resistant to the suppressive functions of MDSCs due to the 

activity of CD25+ NKT cells (16, 54). In order to determine if reprogrammed, tumor-sensitized, 

immune cells could enhance the anti-tumor efficacy of immunotherapy by overcoming MDSCs, 

FVBN202 mice bearing primary tumors received ACT when the tumor had reached 50-70mm
3
, 

or remained untreated. As shown in Figure 1, ACT did not slow the rate of tumor growth (left 

panel) or improve overall survival (right panel) in recipient mice compared to untreated control 

mice.  

 

Dec induces CTA expression in human breast cancer cells. 

Since overcoming MDSCs was not sufficient to enhance therapeutic efficacy of ACT, we sought 

to determine whether the immunogenicity of mammary tumor cells can be enhanced by inducing 

the expression of CTAs. First, we sought to determine the translational capability of 

epigenetically modifying tumor cells to express CTA. To do this, we utilized two human breast 

cancer cell lines, MCF-7 and SKBR3, for in vitro treatment with Dec; control cells remained 

untreated. We observed a greater than two-fold increase in 4/9 CTA-specific transcripts for both 
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cell lines (Figure 2). This observation suggests the use of Dec may have clinical applicability to 

induce CTA expression within human breast tumors. We then questioned whether CTA 

expression may have a role in protecting breast cancer patients from disease recurrence; the 

hypothesis being that CTA expression within the tumor generates robust adaptive immune 

responses that may eliminate residual tumor cells after the completion of conventional cancer 

therapies. Therefore, CTA expression in primary tumor lesions might have prognostic value. We 

performed retrospective studies by using tumor biopsies that were collected from 10 breast 

cancer patients at the time of initial therapy, 5 of which had remained relapse free at least 62 

months and 5 which had relapsed within 76 months (Table 3). Upon RNA extraction from the 

tissue samples, qRT-PCR was performed to determine the trend of CTA expression in patients 

who experienced disease relapse, or who had remained relapse free. As shown in Figure 3, five 

of the CTAs investigated demonstrated a strong trend toward increased expression in patients 

that remained relapse-free, suggesting there may be a positive correlation between increased 

CTA expression and survival after initial therapy. Statistically significant p-values were not 

achieved, however; this is likely due to the limited sample size of patients available for this 

study. Within this limited sample size, patients possessed diverse characteristics in terms of age, 

neoadjuvant therapy, tumor stage, hormone receptor and HER-2 status (Table 3). The sample 

size required to gain at least 80% power at a two-sided type I error of 5% to detect the difference 

in CTA expression between such diverse patients who either relapsed or remained relapse-free is 

shown in Table 2; this ideal sample size ranges from 11 patients per group (SLLP1) to 427 

patients per group (MAGE A4). Therefore, understanding the role of CTAs in relapse-free 

survival will require studying a larger pool of patients and stratifying CTA expression with other 

known prognostic factors.  
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Dec upregulates CTA expression in primary murine tumor cells in vitro and in vivo, and 

reduces the frequency of splenic MDSCs. 

Due to the promising results as to clinical translatability of the induction of CTA expression in 

human tumor cells (Figures 2 and 3), we began to perform preclinical studies. It was 

hypothesized that poor immunogenicity of the tumor allowed tumor progression in the ACT 

recipient mice (Figure 1); thus, improving tumor cell immunogenicity may improve the efficacy 

of ACT and lead to tumor regression. Therefore, the DNA demethylating agent, Dec, was 

utilized to determine if CTA expression could be induced and/or upregulated in MMC cells in 

vitro and in a setting of primary disease in vivo. As seen in Figure 4, treatment of MMC cells in 

vitro with Dec lead to an observed increase in levels of 3/5 CTA coding transcripts. Additionally, 

following five sequential injections of Dec to mice bearing primary MMC tumor all five CTA 

genes examined displayed upregulation compared to untreated tumor-bearing mice, with 

AKAP4, ESX1 and MAGE A4 increasing expression 10-fold or greater.  

Furthermore, we observed that the administration of Dec to primary breast cancer-bearing mice 

significantly reduced the frequency of Gr1+CD11b
+
 MDSCs (Figure 5), suggesting Dec may 

have a dual role in enhancing tumor cell immunogenicity while also reducing the frequency of 

suppressive myeloid cells.  

 

 

 

 

 



 

28 

 

 

 

 

 

 

 

 

 

 

 



 

29 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

Splenocytes harvested from mice bearing CTA-expressing primary tumor demonstrate 

expansion and phenotypic characteristics typical of successful reprogramming, and 

demonstrate enhanced anti-tumor immune responses in vitro.  

Next, we hypothesized that the induction of CTA expression in tumor-bearing mice would 

sensitize their splenocytes against these highly immunogenic antigens and therefore may prove 

to be superior donors for ACT. Thus, characterization of the ability of CTA-sensitized 

splenocytes to expand after B/I stimulation and culture with IL-2, IL7 and IL-15 was performed. 

As seen in Figure 6A, the ability of splenocytes harvested from Dec-treated tumor-bearing mice 

to expand was similar to that observed from control mice after the six day procedure. 

Furthermore, the frequencies of CD4+ and CD8+ T cells as well as the frequencies of CD25+ 

NK and NKT cells remained comparable on the final day of ex vivo procedure, day 6 (Figures 6B 

and 6D). Activated CD25+ NK cells and CD25+ NKT cells were also established one day after 

stimulation with B/I and IL-2 (Figure 6D). Importantly, however, significant reductions in CD4+ 

(40% vs. 70%; p=0.009) and CD8+ (25% vs. 50%; p=0.037) central memory T cells (CD44+ 

CD62L
high

) with a reciprocal increase in CD4+ (50% vs. 12%; p=0.004) and CD8+ (60% vs. 

35%; p=0.02) effector memory T cells (CD44+ CD62L
int

) was observed in mice treated with 

Dec, as seen in Figure 6C. Thus, while splenocytes harvested from Dec-treated mice can be 

successfully reprogrammed and expanded, the use of such cells for ACT in vivo may limit the 

anti-tumor efficacy due to the reduced frequency of central memory T cells.  

Next, we sought to determine the ability of such CTA-sensitized and reprogrammed splenocytes 

to produce an anti-tumor response in the presence of MMC cells and CTA-expressing MMC 

cells. As demonstrated in Figure 7, CTA-expressing MMC cells induced a 2-fold greater release 

of IFN-Ȗ compared to control (p=0.0001). This suggests that reprogrammed CTA-sensitized 
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splenocytes for ACT against CTA-expressing primary tumors may generate an enhanced anti-

tumor immune response.  

ACT fails to reject CTA positive established primary tumors in FVBN202 mice.  

We next studied the effect of utilizing reprogrammed CTA-sensitized splenocytes for ACT of 

FVBN202 mice bearing established primary cancer which had been pretreated with Dec to 

induce CTA expression. Dec injections began once tumors became palpable and ACT was 

performed when tumor had reached 50-70mm
3
. As seen in Figure 8, ACT used in this manner 

did not induce regression of the tumor; the growth kinetics were similar to the control group. 

However, the combination of Dec with ACT does appear to extend survival compared with ACT 

alone, demonstrated in Figure 1.  

Altogether these data suggest that targeting established primary breast cancer using 

reprogrammed cellular immunotherapy, even with improved immunogenicity of the tumor and 

overcoming MDSCs, cannot produce an objective response. However, targeting CTA-expressing 

tumor cells using ACT in a setting of residual disease to prevent distant relapse may be an 

effective strategy.  
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DISCUSSION 

Development of cancer in immunocompetent individuals suggests that the host’s unmodified 

immune response fails to protect the host from cancer due to the weak immunogenicity of many 

tumor cells. In addition, tumor-derived factors increase MDSCs which in turn dismantle anti-

tumor immune responses, as previously reported by our group and others (15, 27, 28). In order to 

overcome such immunosuppressive mechanisms, we have developed a novel method to 

reprogram tumor-associated antigen (TAA)-sensitized immune cells, ex vivo, by pharmacologic 

activation using Bryostatin 1 and Ionomycin (B/I) and culture with the common gamma chain (Ȗ-

c) cytokines IL-7, IL-15 and IL-2. Reprogrammed immune cells display superior IFN-Ȗ 

secretion, an enhanced frequency of highly efficacious central memory T cells (Tcm), as well as 

CD25+ NK and CD25+ NKT cells (16). Importantly, these cells establish a cellular crosstalk to 

render MDSCs immunostimulatory, rather than immunosuppressive and prevent murine breast 

cancer when used in ACT prophylactically (16). We also showed the clinical application of this 

reprogramming protocol using PBMC of patients with early stage breast cancer (54). Here, we 

sought to determine whether administration of ACT in a therapeutic setting against established 

primary tumors could induce tumor regression due to the ability of reprogrammed immune cells 

to overcome MDSCs. Contrary to our hypothesis, utilizing reprogrammed immune cells for ACT 

did not slow the rate of tumor growth or improve overall survival in FVBN202 mice bearing 

established primary MMC. These data suggest that tumors utilize multiple mechanisms which 

need to be tackled simultaneously. Therefore, we decided to combine reprogramming of tumor-

sensitized immune cells with modulation of tumor cells, in situ, in order to improve 

tumor/immune cell crosstalk. The former was expected to overcome MDSCs and the latter was 
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expected to enhance immunogenicity of tumor cells by inducing the expression of highly 

immunogenic CTAs.  

To induce the expression of CTAs in MMC, we used a demethylating drug, Dec, in order to 

hypomethylate the promoter of these genes and induce their expression (132-136).  Therefore, 

Dec is expected to enhance immunogenicity of tumor cells. In fact, we showed that Dec was able 

to induce CTA expression in MMC as well as in human breast tumor cell lines, in vitro, as 

determined by qRT-PCR. The future implementation of additional techniques, such as 

immunohistochemistry or fluorescence in situ hybridization would also yield information as to 

the ability of Dec to homogenously induce CTA expression throughout the tumor. Treatment of 

tumor-bearing mice with Dec also resulted in the induction of CTAs, as determined by qRT-

PCR, in the tumor as well as the elimination of MDSCs, in vivo. Such CTA expression was 

associated with the induction of CTA reactive immune response which produce higher levels of 

IFN- against CTA expressing MMC compared with wild type MMC. However, the combined 

use of Dec and ACT utilizing reprogrammed immune cells failed to produce objective responses 

against established primary MMC. These data suggest that tackling MDSC and enhancing the 

immunogenicity of tumor cells simultaneously may not be sufficient to induce objective 

responses against well-established breast cancer.  

This failure could be associated with downregulation of neu expression in the tumor cells, in 

vivo. In addition, cessation of Dec administration could result in the reversion of the methylation 

patterns within the CTAs promoter region, consequentially resulting in the reduction or complete 

loss of CTAs within the tumor, as we demonstrate in Chapter Three. These data suggest that 

overcoming MDSCs and improving tumor cell immunogenicity is not sufficient to enhance the 

therapeutic efficacy of ACT, perhaps due to unsustained expression of CTAs and/or tumor 
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antigen loss or downregulation under immune pressure. In fact, the effect of anti-tumor immune 

responses in editing the tumor has been reported by several groups. For example, IFN-Ȗ was 

shown to promote immunoediting and subsequent tumor escape in the CT26 colon carcinoma by 

down-regulation of the expression of gp70 immunogenic tumor antigen (137). Tumor-specific 

IFN-Ȗ was also shown to be essential for successful initial immunotherapy, but it also impaired 

subsequent secondary or durable anti-tumor immune responses (138). Farrar et al. (139) 

demonstrated that IFN-Ȗ producing T cells can establish and maintain cancer dormancy; however 

the progression of cancer from indolent to aggressive tumors occurred in the presence of 

increased expression of IFN-Ȗ-inducible genes (140). Romieu-Mourez et al. (141) also showed 

that treatment of HER-2/neu positive cells with IFN-Ȗ resulted in the suppression of protective 

anti-tumor immune responses. We also reported that immunotherapy of rat neu overexpressing 

mouse mammary carcinoma (MMC) elicited neu-specific IFN-Ȗ producing CD8
+
 T cells that in 

turn facilitated breast cancer recurrence of neu antigen negative variant tumors following initial 

rejection of MMC tumor cells in immunocompetent mice (142, 143). The tumor antigen loss was 

due to hypermethylation of the neu promoter and loss of neu both at mRNA and protein levels 

(142, 144), resulting in escape of the tumor from further neu-specific immune responses. It is 

likely that DNA methylation may also impact HER-2/neu gene amplification in humans, as 

suggested by others (145). Subsequent studies showed that the tumor editing functions of CD8
+
 

T cells induced epithelial to mesenchymal transition (EMT) of MMC, and as a result induced neu 

antigen loss and generated breast cancer stem cells (BCSC)-like tumor clones (144).  

In clinical studies, a prospective randomized trial showed that tumor relapse in melanoma 

patients who were immunized with NY-ESO-1 vaccine was associated with downregulation of 

NY-ESO-1 and HLA class I in their tumor. This suggests immunoediting and escape of the 
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tumor under pressure from NY-ESO-1-specific immune responses (146). In patients with ductal 

carcinoma in situ (DCIS), HER-2/neu-targeted vaccination induced HER-2/neu-specific IFN-Ȗ 

producing T cell responses and resulted in HER-2/neu antigen loss (147). Although the authors 

considered this HER-2/neu loss a positive outcome of the immune response, no follow-up studies 

have been performed to determine whether patients with HER-2/neu loss in their tumors might 

end up with recurrence of more invasive tumors. We reported that patients with HER-2/neu 

negative breast cancer had HER-2/neu-specific IFN-Ȗ producing T cell responses which were 

associated with nuclear translocation of IFN-Ȗ receptor α in the tumor site (86). This suggests 

that patients with HER-2/neu negative breast cancer might have had undetectable HER-2/neu 

positive premalignant tumors in the past that had lost HER-2/neu expression and progressed to 

invasive carcinoma under immune pressure. The fact that 55–75% of patients with premalignant 

DCIS overexpress HER-2/neu in their tumor lesions and 75% of breast cancers are HER-2/neu 

negative may suggest the progression of HER-2/neu positive DCIS to HER-2/neu negative breast 

cancer only in the tumor clones that express variable levels IFN-Ȗ receptor  (148). This 

possibility is also supported by the observation that overexpression of HER-2/neu in DCIS 

lesions is usually accompanied by invasive foci (149). In fact, the low frequency of HER-2/neu 

expression (20–25%) in invasive breast cancer implies that HER-2/neu loss is an epiphenomenon 

of disease progression (150). Evaluation of HER-2/neu expression in tumor lesions of patients 

with breast cancer revealed overexpression of HER-2/neu in primary tumors and its loss in 

synchronous metastasis (151) as well as gain of HER-2/neu overexpression in metastatic tumors 

(152). Such discordance between primary and metastatic tumors in the expression of HER-2/neu 

suggests that HER-2/neu loss in vivo may be associated with distant recurrence or metastasis 

only in certain tumor clones. In prostate cancer, HER-2/neu positive tumors, DU145 and PC-3, 
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that responded to IFN-Ȗ (likely due to sufficient expression of IFN-Ȗ receptor α), showed down-

regulation of HER-2/neu expression whereas another prostate tumor line, LNCaP, that failed to 

respond to IFN-Ȗ did not show any change in the expression of HER-2/neu (153). Such failure of 

LNCaP was later shown to be due to the lack of JAK1 gene expression (154). 

Despite the presence of pre-existing tumor-specific immune responses, breast cancer patients 

often do not benefit from immunotherapy (e.g. vaccines, antibodies). For example, although 

Trastuzumab (in combination with chemotherapy) prolongs the survival of women with 

advanced HER-2/neu
+
 breast cancer, the vast majority of women will develop resistance within 

one year of treatment initiation and 15% of patients are de novo resistant (155). Similarly, in a 

Phase II study by Peoples and colleagues, the benefit of a HER-2/neu peptide vaccine (i.e. 

prevention of recurrence) was minimal and non-significant despite the generation of high level 

HER-2/neu-specific CD8
+
 T cell responses (156). Although the reason for the resistance or lack 

of benefit is unclear, it could be related to the recent findings of Reim et al. (157), who showed 

that Trastuzumab associated with IFN-Ȗ producing NK cells expanded tumorigenic 

CD44
high

CD24
low

HER-2/neu
low

 BCSC in vitro. We have observed such epigenetic effects of 

IFN-Ȗ during neu antigen loss and tumor relapse in our mouse model of mammary carcinoma 

(142). Therefore, levels of IFN-Ȗ production or levels of the expression of IFN-Ȗ receptor α on 

tumor cells may determine whether a tumor inhibitory or a relapse promoting effect of IFN-Ȗ 

may prevail. High levels of IFN-Ȗ and/or IFN-Ȗ receptor α expression or the lack of the 

expression can induce a robust tumor rejection via IFN-Ȗ-dependent or -independent mechanisms 

whereas intermediate levels of IFN-Ȗ and/or IFN-Ȗ receptor α expression may facilitate tumor 

escape and relapse (158). This hypothetical model, which is suggested by our recent 

observations, may also predict the direction of discordance between primary and metastatic 
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breast cancers in the expression of HER-2/neu such that tumor clones with low levels of IFN-Ȗ 

receptor α that escaped anti-tumor immune responses may retain HER-2/neu expression during 

metastasis.  

In conclusion, the application of ACT combined with the blockade of a number of tumor escape 

mechanisms could not offer an effective therapeutic strategy against breast cancer because 

proliferating tumor cells undergo continuous change during cell division which could dismantle 

ACT. In the next chapter we tested anti-tumor efficacy of ACT combined with a demethylating 

drug, Aza, against MRD in patients with multiple myeloma after conventional chemotherapy and 

autologous stem cell transplantation (ASCT). 
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Chapter Two 

 

INTRODUCTION 

The results of Chapter One indicate that ACT using reprogrammed immune cells against 

established primary breast cancer was not effective, even when combined with Dec 

chemotherapy for rendering tumor cells highly immunogenic by the induction of CTA 

expression in tumor cells. In retrospect, this was not surprising. Human vaccines and 

immunotherapy against infectious diseases are only effective in a prophylactic setting either prior 

to exposure to the infectious agents, including pathogen-associated cancers, or during the 

incubation period or dormancy after the exposure. Therefore, we sought to determine the 

efficacy of immunotherapy against MRD when combined with Aza for the induction of CTA 

expression in residual tumor cells in order to prevent disease progression and relapse. In a phase 

II randomized clinical trial, patients with multiple myeloma (MM) received autologous 

lymphocyte infusion (ALI) in a setting of ASCT, generated to react with CTA-expressing 

myeloma cells using Aza and stimulated with the immune-modulatory agent Lenalidomide or 

Rev. 

 

Stem cell transplantation following the modulation of tumor-immune crosstalk  

Allogeneic stem cell transplantation (allo-SCT) is associated with a reduction in the relapse rate 

in patients with multiple myeloma (MM) on the basis of an allo-immune graft vs. myeloma 

effect, mediated by donor immune cells targeting tumor (myeloma)-specific antigens, resulting 

in prolonged remission. Allografting is, however, complicated by graft-versus-host disease and 
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unacceptable treatment-related mortality. On the other hand, patients undergoing high dose 

therapy with autologous stem cell transplantation (ASCT) remain at risk for relapse, despite 

maintenance and consolidation regimens (159). An alternative strategy is needed to relieve the 

burden of treatment toxicity observed in patients with myeloma while also maintaining and 

prolonging current treatment efficacy. Immunotherapeutic interventions mimicking graft-versus-

myeloma effect in the ASCT setting may provide such an option. However efficacious, safe, and 

widely applicable strategies for immunotherapy remain elusive, limiting this option only to a 

select number of participants in clinical trials at tertiary cancer centers (160).  

Cancer testis antigens (CTA) represent potential targets for immunotherapy in myeloma. These 

proteins are highly immunogenic with no natural self-tolerance because, under normal 

circumstances, they are only expressed in ‘immunologically privileged’ germ cells, and in the 

placenta (110). Aberrant CTA expression has been observed in both solid tumors and in 

hematological malignancies, particularly in MM (113). This often elicits a broad range of 

cellular and humoral immune responses. In myeloma, several reports have described sporadic 

over-expression of CTA and accompanying CTA-specific T cell and B cell responses (161-165). 

Induced CTA alloreactivity has also been reported in MM patients undergoing allografting, 

possibly associated with relapse-free responses (166). It is noteworthy that CTA expression is 

regulated by methylation of CpG islands in the promoters of these genes, which are mostly 

located on the X chromosome. There is evidence suggesting that therapy with Aza, a potent 

DNA methyl-transferase inhibitor, increases the expression of various CTA in a variety of in 

vitro and in vivo tumor models (128, 167, 168). 

We hypothesized that in vivo induction of CTA by Aza may induce a CTA-specific T cell 

response if it is sequentially administered with Rev, which is widely used in the therapy of MM. 
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Rev functions in part by increasing T cell and NK cell tumor cytotoxicity in vitro (169, 170). 

Additionally, Rev stimulates T cell proliferation and secretion of interleukin 2 (IL-2) and IFN- 

in T cell co-stimulation assays (171, 172), therefore resulting in similar effect rendered by B/I 

during the reprogramming procedure described in chapter 1. Further, CTA-specific T cells 

generated by this combination of Aza and Rev, when adoptively transferred to ASCT recipients, 

could expand in vivo and provide robust protection from disease progression. Additionally, the 

alkylating agent, melphalan, has found a distinctive role in autologous stem cell transplantation 

(ASCT) and allogeneic stem cell transplantation (allo-SCT), due to its broad antitumor activity, 

ability to ablate the bone marrow, and potent immunosuppressive effects (173), and remains the 

most common conditioning agent in transplantation for myeloma (174). Melphalan has been 

shown to significantly reduce tumor burden in MM patients. As early as 1983, high-dose 

melphalan (140 mg/m
2
) in combination with ASCT led to a complete remission (CR; no 

detectable myeloma protein in the bone marrow) in one patient with MM (175). Later, it was 

shown in a cohort of 23 patients with refractory myeloma receiving 80-140 mg/m
2
 of melphalan 

that tumor mass was reduced by more than 75% in 14 patients (176). Selby et al. (177) reported 

on the use of high-dose melphalan (140 mg/m
2
) therapy for 58 previously untreated patients with 

myeloma. A CR in 27% of the patients was achieved and 51% of the patients entered a partial 

response (PR; more than 50% reduction in myeloma protein and improvement in all other 

features). Therefore, in the setting of this study, transplant conditioning and ASCT produce both 

a state of MRD, as well as lymphodepletion, promoting the preferential proliferation of 

adoptively transferred CTA-specific T cells, leading to the promotion of effective adaptive 

cellular immunotherapy (160). 



 

44 

 

A multi-step phase II study was conducted to determine the feasibility of generating CTA-

specific T cells in MM patients and their application in post-transplant maintenance to control 

residual disease (NCT01050790). MM patients received sequential Aza and Rev (Aza-Rev) to 

induce the expression of immunogenic CTA on malignant plasma cells and elicit a CTA-specific 

cellular immune response. The patients had autologous lymphocytes collected and cryopreserved 

following the second and third cycle of this regimen. After completion of this investigational 

regimen patients underwent stem cell mobilization and eventually ASCT. The autologous 

lymphocytes were adoptively transferred to the patients in the second month after transplant. 

Here, we demonstrate the feasibility of collecting and reinfusing autologous lymphocytes 

following ASCT in a setting of MRD. Further, we show induction of the expression of CTA in 

bone marrow of MM patients and an increase in CTA reactive T cells.  
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MATERIALS AND METHODS 

 

Patients 

Patients were enrolled on a prospective phase II clinical trial approved by the Virginia 

Commonwealth University (VCU) Institutional Review Board (MCC12430). MM patients 

referred to VCU's bone marrow transplant program had to meet the following eligibility criteria; 

presence of residual disease, with either quantifiable serum or urinary M protein or free light 

chains, in the presence of a positive immunofixation or clonal bone marrow plasma cells; age 

between 18 and 70 years; able to undergo high dose therapy and SCT; adequate performance 

status, marrow (absolute neutrophil count of >1·5 × 10
9
/l, platelet count >100 × 10

9
/l) and end 

organ function. Patients refractory to or progressing on therapy with lenalidomide were 

excluded. Patients with high ȕβ-microglobulin (≥0·055 g/l) and adverse cytogenetic changes 

were offered tandem SCT, whereas those with standard risk disease underwent a single autograft. 

Investigational regimen 

Patients with MM who were in a partial remission or plateau phase underwent 3 cycles of 

therapy with Aza 75 mg/m
2
 given subcutaneously from day 1-5 (Vidaza; Celgene Corporation, 

Summit, NJ, USA), and Rev 10 mg daily given orally, from day 6-21 (Celgene Corporation). 

The 3 cycles of therapy were administered at 4-week intervals prior to blood stem cell 

mobilization. No planned corticosteroids were administered during this therapy. Following 

3 weeks of therapy in the second and third cycles of Aza-Rev, autologous lymphocytes were 

collected by a single, 18-litre lymphapheresis procedure and cryopreserved (Figure 9).  
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After completion of the third cycle of Aza-Rev, peripheral blood stem cell mobilization was 

performed using granulocyte colony-stimulating factor (G-CSF) 10 μg/kg/day subcutaneously 

from day 1 until the end of apheresis, either with or without plerixafor (0.24 mg/kg 

subcutaneously from day 4 until the end of apheresis). Patients then went on to receive high dose 

melphalan (either 140 or 200 mg/m
2
) on day -2, and underwent autologous SCT on day 0. GM-

CSF (5 μg/kg/day) was administered from day 4 post-transplant for hematopoietic engraftment. 

Standard antimicrobial prophylaxis was administered. 

Autologous lymphocyte infusion (ALI) was performed between day +30 to +60 of the SCT 

(following second transplant in tandem SCT recipients), after resolution of regimen-related 

toxicities and in the absence of active infections. Autologous lymphocytes collected following 

cycles 2 and 3 were infused together (Figure 9). Diphenhydramine and acetaminophen were 

administered for infusion reaction prophylaxis. Corticosteroid administration was avoided as 

much as possible following SCT and ALI. Patients were not given any routine maintenance 

therapy for myeloma following ALI, except for bisphosphonates when indicated. Periodic 

myeloma restaging was performed to monitor disease status. 

 

qRT-PCR for the detection of CTA expression 

Patient underwent bone marrow aspiration and biopsy before and after investigational therapy for 

standard histological studies. qRT-PCR was performed as described above. Both pre- and post- 

Aza-Rev treatment bone marrow samples were used to determine the expression of 10 human 

CTA transcripts [MAGEA3, MAGEA4, MAGEA5, MAGEA6, MAGEC1, CTAG1B (NY-ESO-1), 

SPACA3 (SLLP1), AKAP4, SPA17, SPANXB1 & SPANXB2], using CTA-specific primers and 

human GAPDH (Table 4). Initially, qRT-PCR was performed using RNA isolated from 
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unfractionated Ficoll-Hypaque separated marrow mononuclear cells. Subsequent patients had 

CD138
+
 cells isolated from marrow mononuclear cells using an EasySep human CD138 positive 

selection kit, as instructed by the manufacturer (STEMCELL Technologies, Tukwila, WA, USA) 

followed by qRT-PCR analysis of CD138
+
 plasma cells and CD138- fractions. 
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IFN-γ ELISA for the detection of CTA-specific T cell responses 

Blood samples, autologous lymphocytes and stem cells from the patients were evaluated for the 

presence of T and NK cells, as well as for CTA (NY-ESO-1)-specific T cells, before and after 

Aza-Rev therapy and after ASCT. NY-ESO-1 was selected as the antigenic target to be studied 

due to its frequent up-regulation in the majority of patients (4/6) following Aza therapy and the 

availability of recombinant protein for performing IFN- ELISA, as previously described (16, 

86). Briefly, cellular co-cultures were developed in which autologous lymphocytes were cultured 

with autologous monocyte-derived DCs (2:1) in the presence or absence of recombinant NY-

ESO-1 (8 μg/ml; γH Biomedical; Uppsala, Sweden). Supernatants were collected after 20 h and 

subjected to IFN-ELISA (BD Biosciences, Franklin Lakes, NJ, USA). 

Immuno-phenotypic analysis of the blood and stem cell apheresis product for measuring cellular 

immune parameters was performed, using a dual-platform technique on a Cytomics™ FC500 

flow cytometer (Beckman Coulter Inc., Miami, FL, USA). Antibodies to CD3, CD4, CD8, 

CD34, and CD56 (Beckman Coulter, Inc.) were employed to quantify T cell subsets, 

haematopoietic stem cells, and NK cells. 

Study design 

This was a phase II study designed to test the feasibility of safely giving Aza-Rev to patients 

with MM, followed by the collection and administration of ALI. The study was designed with 

the expectation that ≥70% of the patients would be able to mobilize a cell dose of 10
7
 

mononuclear cells/kg and that ≥80% of the patients would be able to receive the ALI following 

SCT. The required sample size, n = 19, was based on an independent sample χ2
 test with a 0.05 

one-sided significance level and 80% power to detect that 70% of the patients would be able to 
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mobilize the minimal cell dose against the null hypothesis of 40%, and also to detect that 80% of 

the patients will be able to get the infusions post-transplant against the null hypothesis of 50%. 

Drop-out was assumed to be 30%. Early stopping criteria for hematopoietic toxicity, were 

defined as grade 4 neutropenia or thrombocytopenia lasting beyond 7 days, and for non-

hematopoietic toxicity, as any unexpected grade 4 toxicity attributable to the Aza-Rev regimen 

or ALI, with >30% incidence deemed unacceptable. Disease progression, while on 

investigational therapy, with a progression rate of >30% prior to SCT was also unacceptable as 

was the inability of >30% of the patients to proceed onto SCT. Disease response and progression 

were as defined by the International Myeloma Working Group (178). 

Fourteen subjects have been enrolled to date. Temporal changes in CD3
+
, CD4

+
, CD8

+
 and 

CD56
+
 cell subsets at different time points, as well as differences in CTA expressions before and 

after Aza-Rev therapy were tested using the Wilcoxon signed-rank test. All tests were one-sided, 

and CTA expression increases were deemed significant for P-values < 0.05. The likelihoods for 

observing significant outcomes for study aims 1 and 2 are estimated using Bayes methods (179). 

We assigned conservative and pessimistic prior beta distributions for each success rate where the 

modes matched the null hypothesized success rates for each aim (40% for aim 1; 50% for aim 2), 

and assumed that the accumulated success rates were binomial processes based on n observed 

subjects. The predictive probability that we would observe efficacious outcomes for both aims 

(>70% mobilization for ALI and stem cells; >80% receive infusion) after observing the 

remaining (19–n) patients into the study would then be estimated using beta-binomial 

distributions. 
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RESULTS 

 

Patient demographics 

Between February 2010 and February 2012, 14 patients with a median age of 60 years (range 

40–69) were enrolled (Table 5). Nine patients were African American, and seven were female. 

International Myeloma Working Group stage at diagnosis was I (n = 2), II (n = 6) and III (n = 6). 

Six had chromosomal abnormalities, consistent with high-risk disease. A median of two prior 

regimens had been administered (range 1–2) and eight had prior therapy with Rev. A median of 

10.6 months had elapsed from diagnosis to start of Aza-Rev therapy and 10 cycles of therapy 

administered before study therapy was initiated (Table 5). 

 

Response to Aza-Rev and autologous lymphocyte collection 

All 14 patients completed 3 cycles of Aza-Rev and underwent two autologous lymphocyte (AL) 

collections. In order to determine if Aza-Rev therapy had a deleterious effect on the number of 

autologous T cells, a blood differential was performed. Circulating T cell counts were well 

preserved following Aza-Rev therapy (P=0.06) resulting in comparable yield of AL at a median 

21 d following cycles 2 and 3 of Aza-Rev, with 0.87 ± 0.38 and 0.82 ± 0.29 x 10
8
 CD3+ cells/kg 

(n=14, P=0.20) respectively, with the first and second procedures (Table 6). There was no 

significant difference in the circulating T cell subset and NK cell counts between the two cycles 

of Aza-Rev therapy (Figure 10A). The circulating CD3+ cell count was significantly increased 2 

weeks post-ALI compared with the pre-ALI value (P=0.04), as was the CD8+ cell count 

(P=0.02) (Figure 10B). CD4+ and CD56+ cell counts displayed an elevated trend when 
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comparing pre-ALI with 2 weeks-post ALI, however these values did not reach statistical 

significance (P=0.06). 

 

In vivo induction of CTA expression with Aza-Rev in MM 

Quantitative RT-PCR evaluating a panel of 10 human CTAs in unfractionated bone marrow 

specimens collected before and after Aza-Rev from four patients demonstrated the induction of 

6-8 CTAs in each patient (Figure 11A). In order to identify the cells which were being 

modulated to induce expression of CTAs, bone marrow cells from two patients were fractionated 

into CD138
+
 plasma cells (presumably residual tumor cells) and CD138

-
 cells. As shown in 

Figure 11B, CD138
+
 cells were the main source of Aza-induced CTA expression. MAGE A4 and 

MAGE A6 were expressed in bone marrow cells of all patients after investigational therapy 

(n = 6). Expression of other CTAs included MAGE A3 (3/6), MAGE A5 (4/6), MAGE C1 (3/6), 

NY-ESO-1 (4/6), SLLP1 (3/6), SP17 (5/6), AKAP4 (5/6), and SPANXB (1/6). When compared to 

before and after therapy, CTA expression was significantly increased in 4 of 10 CTA as follows: 

MAGEA4 (P = 0.02), MAGE A6 (P = 0.02), SP17 (P = 0.03) and AKAP4 (P = 0.02). The 

increase in MAGE A3 (P = 0.09), MAGE A5 (P = 0.08), MAGE C1 (P = 0.13), NY-ESO-1 

(P = 0.07), SLLP1 (P = 0.13) and SPANXB (P = 0.50) expression, however, did not reach 

statistical significance.  
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CTA-specific T cell response following Aza-Rev therapy 

In order to determine whether induction of CTA expression in the bone marrow cells was 

immunogenic by inducing CTA-specific T cell responses, peripheral blood mononuclear cells 

(PBMCs) of patients were used as source of T cells as well as monocyte-derived DCs. T cells 

were then cultured with autologous monocyte-derived DCs in the presence or absence of 

recombinant NY-ESO-1, and an antigen-specific IFN- release was determined using IFN-

ELISA. As shown in Figure 12, for Patients 1 and 4, NY-ESO-1-reactive T cells appeared after 

the administration of the 1st cycle Aza-Rev and peaked following the 3
rd

 cycle; Patient 2 had a 

preexisting NY-ESO-1 specific response which persisted after the 3
rd

 cycle of Aza-Rev. 

However, the preexisting NY-ESO-1 specific response observed in Patient 3 markedly 

diminished following Aza-Rev therapy. As neither Patient 2 nor Patient 3 demonstrated 

expression of NY-ESO-1 before Aza-Rev therapy (Figure 11A), these data suggest aberrant 

expression of NY-ESO-1 in the tumor in the past, which established an adaptive memory 

response, and was then lost.  Similarly, Patient 5 demonstrated an early response to NY-ESO-1, 

which declined following the 3
rd

 cycle of Aza-Rev and at 8 weeks post-ALI before increasing at 

11 months post-ALI. Interestingly, Patient 4, who displayed a low level of NY-ESO-1 induction 

in bone marrow (Figure 11A) also showed a low level of NY-ESO-1-reactive T cell responses, 

suggesting that the magnitude of CTA expression is directly correlated with the robustness of the 

T cell response. The release of IFN- 11months following ALI, was minimal (Patient 2) or was 

undetectable (Patient 4) in two patients who were in CR 1 year after transplantation. 

Significantly, these patients recorded further improvement in their response from very good 

partial response (VGPR; 90% or greater reduction in serum myeloma protein) to CR at 8 and 

10 months following ALI. Patients 1 and 5, however, had a persistent weak NY-ESO-1-reactive 

http://onlinelibrary.wiley.com.proxy.library.vcu.edu/doi/10.1111/j.1365-2141.2012.09225.x/full#bjh9225-fig-0005
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T cell response 1-year post transplant, in the presence of stable MRD. This response became 

undetectable by 15 months post-transplantation (data not shown) and both patients entered CR. 

 

Loss of CTA expression following immunotherapy was associated with disease relapse 

To identify potential escape mechanisms from ALI, CTA-expressing bone marrow cells were 

monitored pre- and post- Rev/Aza in one patient (Patient 14) whose tumor relapsed at 12-weeks 

post ALI. After the 3
rd

 cycle of Aza-Rev, CTA-induction was observed specifically in CD138+ 

plasma cells (Figure 13A). CTA-expression within CD138+ plasma cells was completely lost at 

the time of disease progression (Figure 13B), suggesting transient expression of these antigens 

may facilitate escape from immune-mediated elimination and result in disease progression. 

However, we were not able to monitor the persistence of CTA expression in the majority of the 

patients because they obtained favorable outcomes to date, 8/14 currently in CR or VGPR with a 

mean follow up of 30 months (Table 7).  

 

 

 

 

 

 

 

 



 

60 

 

 

 

 

 

 

 

 

 

 



 

61 

 

 

 

 

 

 

 

 



 

62 

 

 

 

 

 

 

 

 

 

 

 



 

63 

 

DISCUSSION 

This clinical trial demonstrated the in vivo epigenetic induction of highly immunogenic CTAs in 

patients with MM. Induction of CTAs was associated with a subsequent cell-mediated immune 

response; such CTA-sensitized lymphocytes were cryopreserved and used later as ALI. This was 

accomplished with the administration of a well-tolerated regimen of chemo-immunotherapy. In 

order to adequately control disease progression, this immunotherapy was designed in a stem cell 

transplant scheme, using ALI to target MRD following ASCT, rather than in a setting of large 

tumor-burden. 

Presently, the only known curative therapy for patients with MM is allo-SCT. The graft-versus-

myeloma effect observed following allografting has been linked to the emergence of tumor 

antigen-specific cellular and humoral immune response, particularly following donor lymphocyte 

infusion (180, 181). Similarly, antibodies against HY antigens in male recipients of female donor 

stem cells have been correlated with relapse-free responses following allo-SCT (182). A guiding 

principle in understanding such graft-versus-tumor and graft-versus-host responses is the allo-

reactivity of donor T cells to ‘non-self’ minor histocompatibility antigens, oligopeptides that 

differ between human leucocyte antigen (HLA)-matched donors and recipients (183). 

Unfortunately, the recognition of such non-self-antigens also triggers graft-versus-host disease, 

which erodes the benefit observed in terms of relapse protection following allografting. 

Therefore, if the paradigm of immune recognition of ‘non-self’ can be extended to the 

autologous setting combined with an epigenetic modulator for the induction of CTA expression 

in tumor cells, one may then observe the graft-versus-tumor benefit without the risk of graft-

versus-host disease. 
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Targeting CTAs hold promise in promoting a graft-versus-tumor-like response in an ASCT 

setting. In patients with malignant melanoma, NY-ESO-1 reactive T cells have been isolated and 

expanded ex vivo and re-infused into autologous recipients with dramatic responses recorded 

(112). Recently, in vitro evidence of CTA overexpression by epigenetic modification and an 

adaptive T cell response has been demonstrated against MAGEA4 in patients with Hodgkin 

lymphoma treated with Dec (184). Similar findings have been reported with acute myeloid 

leukemia and myelodysplasia, where therapy with Aza and valproic acid, has led to the 

emergence of cytotoxic T cells reactive to MAGEA1, MAGEA2, MAGEC2 and RAGEA1 

peptides over the course of treatment (136). Our finding of CTA up-regulation in bone marrow 

and plasma cells from myeloma patients with residual disease treated with Aza-Rev in vivo 

corroborates these findings. Evaluation of the expression of a limited panel of CTA showed 

over-expression of multiple CTA in each patient tested following therapy with Aza. 

Interestingly, two patients (2&3) did not show expression of NY-ESO-1 before Aza-Rev therapy 

(Figure 11) but their lymphocytes demonstrated substantial release of IFN- in the presence of 

autologous DCs pulsed with recombinant NY-ESO-1 (Figure 12). This suggests that a memory 

response had been previously established against this CTA at a time when it was expression, the 

expression of which was later lost.  When we tested the efficacy of Aza-Rev to upregulate CTA 

expression in fractionated marrow cell populations, CTA induction in these patients appeared to 

be limited to CD138
+
 plasma cells, as opposed to normal hematopoietic cells. This may be due to 

abnormal regulation or activity of epigenetic modifiers, such as DNA methyltransferase, in 

cancer cells. Recently, altered histone methylation with a more open chromatin structure has 

been demonstrated in patients with chromosomal translocation (4:14) in myeloma, related to 

aberrant multiple myeloma SET domain (MMSET) activity (185). This suggests that malignant 
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myeloma cells may be more sensitive to epigenetic modulation in comparison with normal 

hematopoietic cells. 

CTA reactivity has been invoked as a possible mechanism for graft-versus-leukemia responses in 

allo-SCT recipients (186). We tested NY-ESO-1 reactivity by incubating peripheral blood 

lymphocytes with recombinant NY-ESO-1 pulsed autologous DCs. NY-ESO-1-reactive T cells 

were observed in 5 patients tested, with reactivity correlating with level of NY-ESO-1 expression 

observed post Aza-Rev therapy, and being maintained for 2–11 months following SCT. The 

post-transplant maintenance of NY-ESO-1-reactivity was prolonged in one patient (Patient 1) 

with high levels of NY-ESO-1 expression and MRD before eventually improving to a CR. 

Additionally five other patients (Patients 2, 3, 4, 5 & 9) improved their response from VGPR to 

CR in the months following ALI. This suggests ongoing anti-tumor activity in the patient with 

prolonged MRD and possible maintenance of NY-ESO-1 (and other CTA) expression in 

malignant plasma cells. In the future, phenotypic characterization of patient’s T cells at various 

time-points would also aid in determining if CTA-specific responses derived from effector or 

memory T cells, which would indirectly indicate the status of the patient’s disease. Although we 

only tested the reactivity of autologous lymphocytes against NY-ESO-1, the CTA-specific T cell 

response elicited may be polyclonal; targeting several different CTA simultaneously providing 

enhanced protective capacity. Likewise, antigen loss as a mechanism of tumor escape will also 

need to be monitored by evaluating post-transplant persistence of CTA expression on plasma 

cells in bone marrow to determine the durability of this epigenetic modification. We observed 

loss of CTA expression which was associated with disease progression in one patient.  

Thus, due to our observation in Chapter One that immunotherapy is ineffective in reducing 

tumor burden of bulky primary CTA-expressing cancer, the data in this chapter suggest that 
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targeting CTA-expressing tumor cells in a setting of MRD may be the best time to utilize cellular 

immunotherapy for other cancers, including breast cancer.  
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Chapter Three 

INTRODUCTION 

MDSCs are key cellular suppressors of anti-tumor immune responses in breast cancer patients. 

Tumor-derived factors drive the accumulation of MDSCs in the bone marrow, secondary 

lymphoid organs and at the site of the tumor, thereby inhibiting the efficacy of cellular 

immunotherapy against established tumors. A number of strategies have been used to enhance 

immunotherapy of cancer by overcoming MDSCs. These strategies fall into three major 

categories which include MDSC deactivation, depletion of MDSCs, or conversion of MDSCs to 

APCs. The latter approach identified NKT cells as a key facilitator in promoting MDSC 

maturation into mature myeloid cells with anti-tumor immune stimulatory function. Previous 

work has demonstrated that a function of invariant NKT cells is to promote the maturation of 

cells of myeloid lineage, particularly DCs, as discussed above. Likewise, it was reported very 

recently in an animal model of breast cancer metastasis that activated NKT cells decrease the 

frequency and immunosuppressive activity of MDSCs in tumor-resected mice (187). Additional 

studies have demonstrated that activated NKT cells convert MDSCs into immune-stimulatory 

APCs (52, 53). Using peripheral blood mononuclear cells (PBMC) of patients with early stage 

breast cancer, we also demonstrated that an optimal frequency of CD25+ NKT cells within 

unfractionated reprogrammed immune cells, cultured in the presence of MDSCs, induced the 

MDSCs to lose/downregulate CD11b which was associated with HLA-DR upregulation. Such 

phenotypic modulation was shown to promote anti-Her-2/neu immune responses, in vitro (54). 

Therefore, we suggest that inclusion of CD25+ NKT cells in adoptive cellular therapy will 

enhance the anti-tumor efficacy of adoptively transferred T cells by modulating MDSCs to 

become immunostimulatory.  
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Another barrier to a successful cancer immunotherapy is tumor immunoediting and escape from 

immunotherapy, which likely occurs in the event of robust anti-tumor immune responses. 

Despite the remarkable recent advances in cancer immunotherapy in prolonging patient survival, 

the ability of immunotherapy to treat common carcinomas, which account for majority of all 

cancer deaths, remains limited. This raises the question: is reduction of tumor burden and 

prolonging patient survival weeks to months an acceptable goal for 21
st
 century cancer 

therapeutics, or should we further seek to understand the dynamic interplay between cancer cell 

and immune cell in order to offer a cure for cancer patients? The status of the tumor cells 

themselves when immunotherapy is employed likely determines the effectiveness of the therapy. 

The application of immunotherapy to highly proliferative tumors renders the tumors prone to 

immunoediting and subsequent immunological escape during cell division (188). An important 

point to consider is that human vaccines against infectious diseases are not effective in a setting 

of established disease. The rabies vaccine is an exception; however, it is ineffective as a single 

agent or at the onset of clinical illness. A successful history of human vaccines against infectious 

diseases suggests that cancer immunotherapy can be effective in a prophylactic setting either 

prior to exposure to infectious agents including pathogen-associated cancers, during the 

incubation period, or during dormancy after the exposure. For instance, the rabies vaccine can be 

used as post-exposure prophylaxis because the incubation period or dormancy for rabies is 1-3 

months which provides a window for vaccination. However, it should be combined with anti-

rabies immunoglobulin injections into the wound in order to control the infection and allow the 

vaccine to work. Prophylactic cancer vaccines have also been successful. The FDA has approved 

two vaccines, Gardasil® and Cervarix®, that protect against HPV infection which is the leading 

cause of cervical cancer worldwide (189). HPV infection is also responsible for some vaginal, 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000661954&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000658364&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000444973&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044308&version=Patient&language=English
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vulvar, anal, penile, and oropharyngeal cancers (190). The FDA has also approved a prophylactic 

cancer vaccine against HBV infection, which is a cause of liver cancer. Today, most children in 

the United States are vaccinated against HBV shortly after birth (191). 

In general, conventional cancer therapies including chemotherapy and radiation therapy (RT), 

while inducing cell death in the majority of tumor cells, also promote tumor dormancy (192). 

Although these treatment-induced dormant cells become resistant to higher doses of nominal 

therapies, they may remain sensitive to immunotherapy during the dormant stage due to their 

inability to undergo immunoediting. Additionally, it was reported that the anti-tumor efficacy of 

many chemotherapeutic drugs is due to the induction of immunogenic cell death (ICD). ICD in 

turn induces anti-tumor immune responses, and may subject dormant tumor cells to persistent 

immune surveillance, resulting in the prevention of tumor recurrence (193-196).   

In the previous chapter, we demonstrated that the combined use of ACT and a demethylating 

drug enhanced immunogenicity of tumor cells by inducing CTA expression, and resulted in 

objective responses when administered in a setting of MRD. In this chapter, we sought to 

evaluate the efficacy of ACT using reprogrammed T cells and NKT cells against experimental 

metastatic mammary carcinoma. First, we tested combined use of ACT and Dec against 

experimental metastatic breast cancer in FVBN202 mice, as well as the impact of Dec in tumor 

immunoediting and escape. Then, we performed mechanistic studies by using ACT alone 

without Dec in order to determine anti-tumor efficacy of ACT as well as its role in modulating 

MDSCs to become immune stimulatory APCs, in vivo.  Finally, we tested our hypothesis that 

targeting dormant, but not highly proliferating, mammary tumor cells might overcome tumor 

immunoediting and escape. To this end, we conducted studies in vitro in order to determine 

sensitivity of different types of dormant tumor cells, indolent dormancy versus quiescent 

http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044974&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044185&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000257215&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000446523&version=Patient&language=English
http://www.cancer.gov/Common/PopUps/popDefinition.aspx?id=CDR0000044242&version=Patient&language=English
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dormancy, to immunoediting and escape. We demonstrate that quiescent, but not indolent, 

dormant tumor cells are resistant to immunoediting; thus, they could be the best target for 

immunotherapy. 
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MATERIALS AND METHODS 

 

Mouse model 

FVBN202 transgenic female mice (The Jackson Laboratory; Bar Harbor, ME) were used 

between 8 and 12 weeks of age throughout these experiments. These mice overexpress non-

mutated, non-activated rat neu transgene under the regulation of the mouse mammary tumor 

virus promoter (130). These mice develop premalignant mammary hyperplasia similar to ductal 

carcinoma in situ prior to the development of spontaneous carcinoma (44). Premalignant events 

in FVBN202 mice include the accumulation of endogenous MDSCs (44). These studies have 

been reviewed and approved by the Institutional Animal Care and Use Committee at Virginia 

Commonwealth University.  

 

Tumor cell lines 

The neu overexpressing mouse mammary carcinoma (MMC) cell line was established from a 

spontaneous mammary tumor harvested from FVBN202 mice. Tumor cells were maintained in 

RPMI 1640 supplemented with 10% FBS.  

 

Ex vivo reprogramming and expansion of splenocytes 

FVBN202 transgenic mice were inoculated in the mammary fat pad with 3 × 10
6
 MMC cells. 

Tumor growth was monitored by digital caliper, and tumor volumes were calculated by volume 

(v) = (L [length] × W [width]
2
)/2. As described previously (16, 54), and above, splenocytes were 

harvested 21–β5 days after tumor challenge, when the tumor had reached ≥ 1000mm3
.  
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Adoptive cellular therapy 

Twenty-four hours prior to ACT, FVBN202 mice were injected i.p. with CYP (100 mg/kg) to 

induce lymphopenia. Individual groups of mice were challenged intravenously (i.v) with serial 

dilutions of MMC cells (3.5 × 10
5
, 1 × 10

5
, or 3.5 x 10

4
). Mice then received reprogrammed 

splenocytes i.v. at a dose of 70 × 10
6
/mouse later the same day (+ACT), or remained untreated 

(No ACT). The study end-point and euthanasia occurred when the animals were considered 

moribund upon losing 10-20% of their initial body weight due to disease progression. 

 

Characterization of splenocytes and tumor-infiltrating leukocytes  

Spleens and metastatic tumor lesions of FVBN202 mice were harvested when the animals 

became moribund, and were then homogenized into a single cell suspension as described 

previously (16) and below; splenocytes were then characterized using flow cytometry. Reagents 

used for flow cytometry: anti-CD16/32 Ab (93), FITC-CD3 (17A2); FITC-CD11b (M1/70); 

FITC-anti mouse IgG (Poly4053); PE-GR-1 (RB6-8C5); PE-CD11c (N418); PE-F4/80 (BM8); 

PE-PD-1 (RMP1-30); PE-CD25 (3C7); PE-Ki-67 (16A8); Allophycocyanin-CD49b (DX5); 

Allophycocyanin-CD62L (MEL-14); Allophycocyanin-Annexin V; PercP/CY5.5-CD4 (GK1.5); 

Alexa Fluor 647-I-Aq (KH116); PercP/CY5.5-CD86 (GL-1); PercP/CY5.5-Rat IgG2a, k Isotype 

Control (RTK2758); PE-Dazzle-CD80 (16-10A1); PE-Dazzle-Armenian Hamster IgG Isotype 

Control (HTK888); PE/CY7-CD8α (5γ-6.7); PE/CY7-CD40 (3/23);PE/CY7-Rat IgG2a, k 

Isotype Control (RTK2758); Brilliant Violet 421-PD-L1 (10F.9G2); Brilliant Violet 605-CD45 

(30-F11); propidium iodide (PI), all of which were purchased from Biolegend (San Diego, CA). 

BD Horizon V450-Annexin V and FITC-Fixable Viability Stain (FVS); were purchased from 

BD Biosciences (Franklin Lakes, NJ). Anti-rat neu antibody (anti–c-Erb2/c-Neu; 7.16.4), was 
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purchased from Calbiochem. All reagents were used at the manufacturer’s recommended 

concentration. Cellular staining was performed as previously described by our group (16, 54), or 

as recommended by the manufacturer (Ki-67, FVS). Multicolor data acquisition was performed 

using a LSRFortessa X-20 (BD Biosciences). Data were analyzed using FCS Express v4.07 (De 

Novo Software; Glendale, CA). 

 

Sorting of myeloid cells by FACS 

Splenocytes were stained for surface expression of CD11b and Gr-1 as described above. Isolated 

cells were gated on the myeloid cell population based on their light scattering properties, thereby 

excluding cells of lymphoid origin. CD11b
+
 Gr1

+
 MDSCs and CD11b-/lo Gr1

-
 myeloid cells 

from the ‘No ACT’ and ‘+ACT’ groups were then sorted into independent populations using a 

FACSAria (BD Biosciences) as previously described (54). Purity of sorted cells was consistently 

greater than 90%. 

 

IFN-γ ELISA 

Splenocytes from the ‘No ACT’ and ‘+ACT’ groups were independently cultured in serum-free 

RPMI 1640 in order to enrich for non-adherent cells of lymphoid origin from adherent cells of 

myeloid origin. After 2 hours, non-adherent splenocytes were cultured in complete medium with 

irradiated MMC cells (140Gy) at a 10:1 ratio, and with or without sorted MDSCs or CD11b-/lo 

Gr1
-
 myeloid cells at a 2:1 ratio, for 20 hours. Supernatants were then collected and stored at 

−80°C until assayed. IFN-Ȗ was detected in the supernatant using a Mouse IFN-Ȗ ELISA kit (BD 

Biosciences), according to the manufacturer’s protocol.  
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Isolation and characterization of lung metastases 

Lungs were harvested from the ‘No ACT’ and ‘+ACT’ groups after animals became moribund. 

Metastatic lesions were individually excised from the residual lung tissue, and were then 

digested in Trypsin-EDTA (0.25%; Life Technologies) overnight at 4°C. The following day, the 

suspension was incubated at 37°C for 30 minutes, followed by tissue homogenization to create a 

cellular suspension. The cell suspension was then washed twice with RPMI supplemented with 

10% FBS. Residual red blood cells were then lysed using ACK lysing buffer, followed by an 

additional wash with RPMI 10% FBS. The cell suspension was then placed in cell culture and 

cultured with RPMI 10% FBS. Adherent metastatic tumor cells were then allowed to establish 

and proliferate for 10-14 days; they were then characterized for the expression of rat neu and PD-

L1 using flow cytometry. 

 

Characterization of metastatic tumor-infiltrating leukocytes 

Lungs from each group were harvested and metastatic lesions were isolated as described above. 

After tissue digestion of the metastatic lesions and red blood cell lysis, 10
6
 cells of the 

suspension were placed in flow tubes and stained for surface molecules as described above. All 

analysis was performed by gating on viable leukocytes (Annexin V
-
 CD45

+
), thereby 

discriminating out apoptotic cells and tumor cells.   

 

Establishment of in vitro tumor cell dormancy 

MMC cells were treated with three daily doses of Adriamycin (Doxorubicin Hydrochloride; 

Sigma-Aldrich; St. Louis, MO) (1M/day for 2 hours). Residual, dormant MMC cells remained 
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adherent to tissue culture flasks, while the MMC cells susceptible to ADR-therapy became non-

adherent and were removed from the culture periodically. Assessment of viability, Ki-67 

expression and IFN--induced PD-L1 upregulation by flow cytometry occurred 3 weeks after the 

final treatment. Similarly, three daily doses of RT (2Gy/day) were also used to establish dormant 

MMC cells. ADR and RT-induced dormant MMC cells were used in the cytotoxicity assay 8 

days after the final treatment.  

 

Cytotoxicity assay 

Reprogrammed splenocytes were cultured with MMC  cells or in vitro established dormant 

MMC cells at a 10:1 E:T ratio in complete medium (RPMI 1640 supplemented with 100 U/ml 

penicillin, 100 μg/ml streptomycin, 10% FBS, 10 mM L-glutamine) with 20 U/ml IL-2 

(PeproTech). To determi76e resistance of dormant tumor cells to conventional therapies, ADR-

induced dormant MMC cells were treated with a high dose of ADR (1M for 24hrs), and RT-

induced dormant MMC cells were treated with a high dose of RT (18Gy). After 48 hours, MMC 

cells were harvested and stained for rat neu (anti–c-Erb2/c-Neu; Calbiochem), Annexin V, and 

PI as previously described (16). Flow cytometry was used to analyze the viability of neu
+
 MMC 

cells.  

 

Statistical analysis 

Outcomes are summarized by basic descriptive statistics such as mean and standard error of the 

mean (SEM); differences between groups are illustrated using graphical data presented as mean 

± SEM. Statistical comparisons between groups were made using one-tailed and two-tailed 
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Student t test per the specific hypothesis. Time to death in the in vivo survival studies was 

calculated from baseline to the date of death (due to weight loss ≥ 10%). Kaplan-Meier curves 

and log-rank tests are used to illustrate time to death and to test the difference between each 

group. A p-value ≤ 0.05 was considered statistically significant. 
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RESULTS 

Immunotherapy of metastatic tumor can prolong animal survival but fails to cure cancer 

We have previously reported that ACT utilizing reprogrammed T cells/NKT cells in a 

prophylactic setting protected animals against primary tumors and recall tumor challenge. This 

protection was associated with the presence of memory T cells, and CD25+ NKT cells that 

rendered T cells resistant to the suppression by MDSC (197). Similar observations were made 

using PBMCs from patients with early stage breast cancer such that the presence of CD25+ NKT 

cells resulted in the modulation of CD33+CD11b+HLA-DR- MDSCs toward CD33+CD11b-

/loHLADR+ myeloid cells which in turn overcome the suppressive function of MDSCs (198). 

Here, we sought to determine if ACT utilizing reprogrammed immune cells can protect animals 

against experimental metastasis. Due to the promising results obtained from the combined use of 

ALI and Aza-Rev in patients with MM, we sought to determine whether the combined use of 

ACT and Dec could eliminate experimental metastatic MMC. First, we demonstrated that ACT + 

Dec resulted in prolonging the survival of animals compared to the control groups, No-ACT or 

Dec alone (Figure 14; p=0.0001 and p=0.037, respectively). The evaluation of metastatic tumor 

cells showed that Dec alone facilitated downregulation of the neu antigen on metastatic MMC in 

the lung (Figure 15A, MFI: 442 vs. 202) as well as total loss of neu antigen in 36% of tumor 

cells compared with control MMC cell line containing a residual 5% of neu negative cells 

(Figure 15B). Since Dec induces the expression of CTAs and, therefore, functions as an in situ 

vaccination by eliciting endogenous T cell responses, neu loss or downregulation in animals who 

received Dec could be due to contribution of endogenous T cell response and Dec. To determine 

the contribution of Dec in neu antigen loss or downregulation, we performed in vitro studies by 

treatment of MMC with Dec alone where the endogenous immune response did not have any 
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contribution. We show that Dec treatment resulted in the downregulation of neu expression, but 

did not induce total neu loss (Figure 16, p=0.008). In addition, induction of CTAs in human 

tumor cell line by treatment with Dec was found to be transient. The expression of CTAs 

induced three days after treatment began was found to be severely diminished after the removal 

of Dec from the culture medium and then continuing the culture until day seven  (Figure 17).  

Therefore, due to the induction of tumor escape mechanisms in highly proliferating MMC by 

Dec, such as neu loss/downregulation and inability to stably express CTAs, we moved forward to 

test the efficacy of ACT against experimental metastases without the inclusion of Dec. 

Splenocytes of animals harboring primary mammary tumor or metastatic MMC in the lung can 

be reprogrammed, ex vivo, to generate memory T cells and CD25+ NKT cells (Figure 18). 

Recipients of ACT were conditioned by the injection of cyclophosphamide (CYP), and 

challenged i.v. with MMC cells. Animals served either as control (No ACT), or received ACT 

when proliferating MMC cells were present in the circulation (+ACT). As shown in Figure 19, 

ACT prolonged survival of animals regardless of whether the source of donor splenocytes was 

from primary tumor-bearing mice or from metastatic tumor-bearing mice. Therefore, we 

determined that using donor cells from primary tumor-bearing mice had the potential for more 

clinical application, in that lymphocytes from early stage breast cancer patients could be isolated 

and cryopreserved before the administration of conventional therapies. Then, in a setting in 

which the tumor sufficiently responds to initial therapy, cryopreserved lymphocytes could be 

thawed, reprogrammed and infused as ACT in order to target residual tumor cells and prevent 

relapse or prolong time-to-relapse. We have previously shown that cryopreserved PBMCs can be 

successfully reprogrammed (54). 
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We then challenged mice with a serial dilution of MMC cells to induce experimental metastasis 

in order to determine if tumor burden may impact the efficacy of ACT. We demonstrated that 

ACT prolonged survival of animals regardless of the dose of tumor challenge, but all mice 

succumbed to metastatic tumor in the lung (Figure 20A-C).  
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ACT utilizing reprogrammed T cells and CD25+ NKT cells sustains an anti-tumor memory 

response, in vivo 

In order to determine whether reprogrammed memory T cells were maintained in vivo, 

splenocytes of ACT recipients were collected when mice become moribund, and cultured with 

MMC tumor cells. As shown in Figure 20D, tumor-reactive IFN-Ȗ production by endogenous 

splenic T cells from the +ACT group was greater than that produced by T cells from the No-

ACT control group. These results suggest that ACT promotes the retention of long-lived anti-

tumor immune responses, and that the lack of full protection against experimental metastases 

was not due to the loss of tumor-reactive immune cells.   

 

ACT shifts splenic myeloid cells from Gr1+CD11b+ MDSCs to Gr1-CD11b-/lo myeloid 

cells 

We next sought to determine whether the failure of ACT to result in complete elimination of the 

tumor was due to the inability of reprogrammed immune cells to modulate and overcome the 

suppressive function of MDSCs in vivo. Experimental animals (Figure 20) were sacrificed at the 

end of the trial when the ACT and No-ACT groups showed similar tumor burden in the lung 

(Figure 21A). ACT resulted in a significant reduction in trafficking of myeloid cells to the spleen 

in tumor-bearing animals (p=0.002), but the frequency remained higher than that observed in 

naïve mice (p=0.001). Importantly, ACT also reduced the frequency of MDSCs in the splenic 

myeloid cell compartment (Figure 21B, p=0.005), but not to the level observed in naïve mice 

(p=0.008). A similar trend was observed on total MDSCs (Figure 21B, p=0.0001 and p=0.0009). 

Conversely, ACT increased the proportion of Gr1-CD11b-/lo cells in the splenic myeloid cell 

compartment (Figure 21B, p=0.004), but remained lower than those in naïve mice (p=0.002). 
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Similarly, ACT increased percent total of Gr1-CD11b-/lo cells to a frequency similar to that of 

naïve mice, when compared with the No-ACT group (Figure 21B, p=0.056). 

 

ACT modulates the phenotype of Gr1+CD11b+ MDSCs in the spleen 

As the frequency of MDSCs appears to be altered upon ACT administration, we sought to further 

characterize these cells after ACT. Since the expression of MHC class II (MHCII) on MDSCs is 

associated with a contact-dependent mechanism of suppression (199), we sought to determine 

the frequency of MHCII expression on MDSCs, in vivo. Interestingly, splenic MDSCs of the 

+ACT group displayed elevated expression of MHCII in comparison to the No-ACT group 

(Figure 22A, 50% vs. 25%); and was similar to the frequency displayed by naïve mice. 

Conversely, splenic MDSCs of the No-ACT group were mainly MHCII- compared with the 

+ACT group or naïve mice (Figure 22B, 75% vs. 50%). The percentage of total MHCII+ 

MDSCs in the spleen of metastatic tumor-bearing mice was higher than that in naïve mice, and it 

did not change following ACT (Figure 23A). On the other hand, ACT reduced the total 

percentage of MHCII- MDSCs in the spleen (Figure 23B, p=0.029), though they remained 

higher than those in naïve mice (p=0.039). Since the total percentage of MHCII+ MDSCs and 

MHCII- MDSCs in the spleen remained increased compared with those in naïve mice, we 

hypothesized that the ratio of MDSCs to T cells in the spleen may have been altered. Therefore, 

we calculated the ratio of MDSCs to T cells because it is known that MDSCs suppress T cells 

function at high ratios to T cells (1:1 to 1:3). We found a higher proportion of MDSCs to T cells 

in the no-ACT group (1:3) compared to the ACT group (1:9) (Figure 23C, p=0.029), suggesting 

the MDSCs remaining after ACT have a reduced capacity to suppress the pool of anti-tumor T 

cell responses. The proportion of Gr1-CD11b-/lo myeloid cells to T cells did not change 
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following ACT (Figure 23D). Since the total percentage of MHCII+ MDSCs in the spleen did 

not change following ACT, we also looked at the expression of co-stimulatory molecules on 

these cells. As shown in Figure 23E-G, ACT resulted in a significant downregulation of the 

expression of CD80 (Figure 23E, p=0.049) and CD86 (Figure 23F, p=0.033), implying MDSCs 

in ACT recipients also may also have a reduced suppressive potential per cell (43, 200). 

Expression of CD40 did not change in the ACT group compared with the No-ACT group (Figure 

23G).  

 

ACT generated splenic Gr1-CD11b-/lo myeloid cells boost anti-tumor immune responses 

We have previously reported that the presence of CD25+ NKT cells in reprogrammed immune 

cells induced the conversion of a fraction of MDSCs to CD11b-/lo MHC class II+ myeloid 

stimulatory cells, in vitro (54). Here, our in vivo studies also showed that only a fraction of 

MDSCs were converted to G1-CD11b-/lo myeloid cells; MDSCs were still present in ACT 

group, though at a lower frequency compared to the No-ACT group (Figure 21). In order to 

determine the immune stimulatory function of newly converted G1-CD11b-/lo myeloid cells, as 

well as the immune suppressive function of the remaining Gr1+CD11b+ MDSCs in the ACT 

group, splenic myeloid cells from ACT recipients were sorted into Gr1+CD11b+ and Gr1-

CD11b-/lo cellular populations, and were then cultured with their own endogenous splenic-

derived lymphocytes in the presence or absence of MMC cells (Figure 24A). Endogenous 

splenic-derived lymphocytes and sorted myeloid cells from the No-ACT group were used as 

controls (Figure 24B). ACT generated splenic Gr1-CD11b-/lo myeloid cells boosted the release 

of tumor-induced IFN-Ȗ from endogenous lymphocytes (Figure β4A, p=0.0γ), whereas 

Gr1+CD11b+ MDSCs maintained suppressive function when used at a 1:2 ratio to lymphocytes 
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(Figure 24A, p=0.008). Cells derived from the No-ACT control group did not demonstrate 

tumor-induced IFN-Ȗ release in the presence or absence of sorted splenic Gr1-CD11b-/lo 

myeloid cells (Figure 24B). Similar to our in vitro observations from animal studies (16), or 

patients with early-stage breast cancer (54), the increased tumor-specific IFN-Ȗ production by 

lymphocytes derived from the +ACT group was associated with a higher frequency of splenic 

CD25+ NKT cells in these recipient mice (Figure 24C). The frequency of CD25+ NK cells did 

not increase following ACT (data not shown). These results suggest that Gr1-CD11b-/lo myeloid 

cells generated by ACT were functionally different from those of the No-ACT group, and that 

the activity of CD25+ NKT cells in vivo may render them immunostimulatory. Our previous 

studies in vitro showed that Gr1-CD11b-/lo myeloid stimulatory cells were converted from a 

fraction of Gr1+CD11b+ MDSCs by CD25+ NKT cells (54).  
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ACT generated splenic Gr1-CD11b-/lo myeloid cells are unique immune stimulatory cells, 

which differ from conventional APCs  

Since Gr1-CD11b-/lo myeloid cells generated by ACT showed immune stimulatory function 

(Figure 24), and had a higher frequency in contrast with the No-ACT group (Figure 21B), we 

next sought to characterize these cells phenotypically. As shown in Figure 25A, frequency of 

MHCII expressed by CD11b-/loGr1- myeloid cells in the +ACT group and in naïve mice was 

higher than that in the no-ACT group. Gr1-CD11b-/loMHCII+ myeloid cells in the +ACT group 

and naïve mice also showed an increased MFI of the co-stimulatory molecule, CD86, compared 

with the No-ACT group (Figure 25B). In addition, the +ACT group downregulated the co-

stimulatory molecules, CD40 and CD80, on Gr1-CD11b-/loMHCII+ myeloid cells compared 

with naïve mice (Figure 25C, p=0.0002 and p=0.012, respectively) and the no-ACT group 

(Figure 25D, p=0.053 and p=0.016, respectively). 

In order to determine whether Gr1-CD11b-/loMHCII+ myeloid cells responded to toll-like 

receptor (TLR) stimulation and resulted in their maturation,  as has been described for 

conventional APCs (201-203), these cells were stimulated with the TLR-4 agonist, 

lipopolysaccharide (LPS), in vitro. We used splenocytes from the No ACT group as source of 

Gr1-CD11b-/loMHCII+ myeloid cells because they expressed lower levels of MHCII and CD86 

expression at baseline. As can be seen in Figure 26, LPS induced the maturation of Gr1-CD11b-

/loMHCII+ myeloid cells by upregulating the expression of MHCII (MFI: 2000 vs. 5500; 

p=0.007), as well as the co-stimulatory molecules CD86 (MFI: 37 vs. 150; p=0.002), CD40 

(MFI: 580 vs. 925; p=0.009), and CD80 (MFI: 50 vs. 100; p=0.03). 

Since ACT generated Gr1-CD11b-/lo immune stimulatory myeloid cells displayed 

characteristics of APCs by expressing signal I (MHCII) and signal II (CD86), and these cells 
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demonstrated maturation patterns generally observed in APCs upon LPS stimulation, we sought 

to determine whether these cells were conventional APCs. As shown in Figure 27, nearly all 

Gr1-CD11b-/loMHCII+ myeloid cells lacked expression of the DC marker CD11c (Figure 27, 

94-97%). The frequency of these myeloid stimulatory cells did not change during tumor 

challenge or ACT, accounting for 3-4% of total splenocytes (Figure 27). In addition, these 

myeloid stimulatory cells did not express the pan marker of macrophages, F4/80 (Figure 28, 95-

98%). 

 

Immunotherapy induces tumor escape in proliferating tumor cells and indolent dormant 

cells, but not in quiescent dormant cells 

Since tumor-reactive lymphocytes persisted following ACT, and modulation of myeloid cells 

occurred by reducing MDSCs and increasing myeloid stimulatory cells, we sought to determine 

whether tumor immunoediting resulted in the escape of tumor cells from elimination by ACT, 

and ultimately death of the animal. Metastatic tumor lesions were isolated from the lung at the 

end of the trial and analyzed for the expression of the tumor antigen, neu, and programmed death 

ligand 1 (PD-L1). The tumor lesions isolated from +ACT group showed downregulation of the 

neu antigen on the tumor cells compared with control MMC tumor cell line and the lesions 

isolated from the no-ACT group (Figure 29A, left panel; p=0.00003 and p=0.0008, respectively).  

Additionally, 25% of MMC cells isolated from metastatic tumor lesions demonstrated total loss 

of neu expression compared with control MMC tumor cell line and the lesions isolated from the 

No ACT group (Figure 29A, right panel; p=0.002 and p=0.01, respectively). This suggests that 

metastatic MMC cells may escape detection from neu-specific cellular immunity. Additionally, 

we detected an upregulation of PD-L1 on the lung metastatic tumor cells compared with control 
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MMC tumor cell line (Figure 29B; MFI 390 vs. 78, p=0.00002). Interestingly, the No ACT 

group had higher expression of PD-L1 in the tumor compared with the ACT group (MFI 1360 

vs. 390, p=0.011). The immune suppressive function of PD-L1 requires engagement with 

programmed death receptor 1 (PD-1), which renders immune cells tolerogenic (204, 205). 

Importantly, 40-50% of reprogrammed T cells and NKT cells that were used for ACT expressed 

PD-1 (Figure 30), but only CD8+ T cells were observed to upregulate PD-1 as a result of 

reprogramming (Figure 30; p=0.01). Therefore, we also analyzed tumor-infiltrating T cells for 

PD-1 expression, to determine the potential for the PD-1/PD-L1 axis to mediate T cell tolerance 

within the tumor site. Interestingly, as seen in Figure 31A, tumor infiltration of CD8+ T cells 

was greater in mice receiving ACT compared to untreated mice (14% vs. 3% respectively; 

p=0.02).  However, expression of PD-1 remained intact on tumor infiltrating CD8 + T (Figure 

31B). We did not observe CD4+ T cell infiltration into the tumor lesions (data not shown). 

Splenic T cells and NKT cells that were isolated from the +ACT and No-ACT group when 

animals became moribund also expressed PD-1, though there was no statistical difference 

between the groups (Figure 32, 10% of T cells and 50% of NKT cells). All together, these data 

suggest that although ACT promotes the infiltration of CD8+ T cells, the highly proliferative 

nature of the metastatic tumors may evade such anti-tumor immune responses by emerging with 

reduced expression of the tumor antigen, neu, and upregulating the co-inhibitory molecule PD-

L1. Thus, we then began to question if residual tumor cells that remain after conventional 

cytotoxic therapy, which are generally dormant, also employ similar escape mechanisms or if 

they were perhaps more sensitive to immune-mediated elimination.  

To determine whether dormant tumor cells were resistant to escape and immunoediting, MMC 

tumor cells were treated with ADR in order to establish tumor dormancy. A clinically relevant 
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proliferation marker, Ki67, along with a viability dye (FVS), were used to detect viable, indolent 

tumor cells (Ki67+/FVS-) and quiescent tumor cells (Ki67-/FVS-). As shown in Figure 33A, 

ADR induced apoptosis in the majority of MMC cells; 3 weeks after treatment the number of 

FVS- viable MMC cells was reduced from 77% to 31% (p=0.005). The remaining residual viable 

tumor cells that escaped chemotherapy-induced apoptosis entered a dormant state, as there was 

no significant increase in the number of tumor cells between one week and three weeks after the 

completion of ADR chemotherapy (Figure 33B). To determine if dormant tumor cells could 

exploit immune escape mechanisms, we treated dormant MMC cells with IFN-Ȗ, a cytokine 

produced and secreted by inflammatory cells in the tumor microenvironment, three weeks after 

the completion of ADR treatment in order to provoke PD-L1 expression (206, 207). We 

evaluated the expression of PD-L1 on viable proliferating control MMC cells, without 

(Untreated) and with IFN- Ȗ treatment (Untreated -> IFN-Ȗ), as well as on viable dormant tumor 

cells without (+ADR) and with IFN- Ȗ treatment (+ADR -> IFN-Ȗ). ADR or ADR -> IFN-Ȗ 

treatment increased Ki67- quiescent tumor dormancy (Figure 34A, left panel, p=0.02 and 

p=0.001, respectively), and reduced the frequency of Ki67+ indolent MMC cells (Figure 34A, 

right panel, p=0.02 and p=0.001, respectively). IFN-Ȗ treatment induced upregulation of PD-L1 

on Ki67+ proliferating MMC (Figure 34B, left panel, p=0.002) and Ki67+ indolent tumor cells 

(Figure 34B, left panel, p=0.01). Interestingly, Ki67- control MMC cells and Ki67- quiescent 

MMC cells did not upregulate PD-L1 (Figure 34B, right panel). As Adriamycin significantly 

increases the population of quiescent MMC cells which are less responsive to an inflammatory 

environment which may upregulate the expression of PD-L1 compared with indolent dormant 

cells or proliferating cells, this suggests that immunotherapy applied after conventional cytotoxic 

therapy may be more effective in eliminating Ki-67- tumor cells generated by chemotherapy. 
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Dormant MMC cells established by ADR become resistant to chemotherapy, but remain 

sensitive to immunotherapy 

In order to determine whether dormant MMC cells established by ADR chemotherapy remain 

sensitive to immunotherapy, dormancy was established by treating cells with three daily doses of 

ADR treatment (1 uM/day for 2 hrs) (Figure 35A); eight days after the final treatment, MMC 

cells received a high dose of ADR (1uM for 24 hrs), or were cultured with reprogrammed 

immune cells for 48 hrs. ADR treatment induced apoptosis in MMC cells (Figure 35B, p=0.01). 

Tumor cells that survived apoptosis became chemo-refractory; additional ADR treatment at a 

higher dose (1uM for 24 hrs) did not induce cell death (Figure 35B, average 40% vs. 54%). 

However, they remained sensitive to tumor-reactive lymphocytes. In the presence of tumor-

reactive immune cells, the frequency of viable ADR-treated dormant MMC dropped from 40% 

to 8% (Figure 35B, p=0.003). In fact, immunotherapy was more effective than a high dose of 

chemotherapy in inducing apoptosis in dormant MMC (Figure 35B, p=0.02). We also established 

dormant MMC by three daily doses of RT (2Gy/day); again surviving dormant cells became 

refractory to RT. An additional RT at a higher dose (18 Gy) did not markedly decrease the 

frequency of viable tumor cells (Figure 36, 53% vs. 52%). However, RT-refractory MMC cells 

remained sensitive to tumor-reactive lymphocytes as the viability dropped from 53% to 8% 

(Figure 36, p=0.002). In fact, immunotherapy was more effective than a high dose RT on 

inducing apoptosis in dormant MMC (Figure 36, p=0.01). 

 In order to determine the efficacy of targeting dormant tumor cell in vivo, we performed a 

preliminary study in which we treated experimental animals bearing primary MMC with ADR, 

followed by ACT once the tumor growth plateaued, which represents tumor dormancy. As seen 

in Figure 37, both animals treated with ADR exhibited suppression of tumor growth. 
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Importantly, the animal which also received ACT exhibited demonstrable tumor regression by 

day 24. This data suggests that MMC cells which are in a dormant state can be targeted more 

effectively than highly proliferative tumor cells, in vivo.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

111 

 

 

 

 

 

 

 

 

 

 

 



 

112 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

113 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

114 

 

DISCUSSION 

We developed an experimental metastatic mouse model by i.v. injection of highly proliferative 

MMC cells to FVBN202 mice.  Animals in this model became moribund within 20-40 days, and 

presented with lung metastases upon macroscopic inspection. This model represents the onset of 

advanced stage disease. We demonstrated that concurrent use of Dec with ACT using 

reprogrammed NKT and T cells prolonged survival of the experimental animals, but failed to 

eliminate the tumor as all mice eventually succumbed to metastatic disease in the lung. Failure in 

tumor elimination was associated with downregulation of the tumor antigen, neu, on metastatic 

tumor cells. Neu downregulation occurred in the presence of Dec, in vitro, whereas total neu loss 

and downregulation were evident in the presence of Dec treatment, in vivo. Additionally, in vitro 

studies demonstrated that Dec-induced CTA expression was transient; tumor cells quickly 

downregulated expression of CTA transcripts upon the cessation of Dec treatment. These data 

suggest that Dec may function as an in situ vaccination by inducing immune responses against 

the tumor which in turn facilitate total antigen loss. Additional studies involving ACT without 

Dec treatment confirmed that total neu antigen loss was mediated by anti-tumor immune 

responses, in vivo, whereas our in vitro studies demonstrated that Dec alone only had the 

capacity to induce downregulation of neu antigen.  

ACT without Dec also prolonged animal survival but, again, it failed to eliminate the tumor as 

animals eventually succumbed to metastatic disease in the lung. The data suggest that this was 

due to the induction of tumor escape mechanisms by these highly proliferative tumor cells, 

including upregulation of PD-L1 and loss of neu antigen by the tumor, which may result from 

immunoediting due to the increased infiltration of CD8+ T cells in these tumors. Very 

importantly, we identified and characterized novel APCs that were established from a portion of 
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MDSCs resulting from the administration of ACT containing CD25+ NKT cells, in vivo. These 

novel Gr1-CD11b-/lo immunostimulatory cells displayed a phenotype distinct from conventional 

APCs, specifically DCs and macrophages. Finally, promising results in patients with MM 

(Chapter Two) were obtained when ACT was administered during a setting of MRD, likely when 

indolent and/or quiescent tumor cells were present. Therefore, we hypothesized that targeting 

indolent, but not highly proliferating, mammary tumor cells might overcome tumor 

immunoediting and escape. Therefore, we conducted studies in order to determine the sensitivity 

of different types of dormant cells, indolent dormancy versus quiescent dormancy, to 

immunoediting and escape. Our in vitro studies demonstrated that quiescent, but not indolent, 

dormant tumor cells are resistant to immunoediting; thus, they may represent the ideal target for 

immunotherapy. 

We have previously reported that PBMCs collected from patients with early stage breast cancer 

can be reprogrammed and expanded ex vivo (54). Here, we compared two different sources of 

tumor-sensitized immune cells, including animals harboring early stage primary tumor or those 

harboring metastatic tumor in the lung. We demonstrated that immune cells from both sources 

can be reprogrammed and expanded ex vivo. ACT utilizing these reprogrammed immune cells 

produced similar objective responses. We demonstrated that failure of ACT in complete 

elimination of the tumor was not due to the status of metastatic tumor burden, loss of tumor-

reactive T cells, or the presence of MDSCs. In fact, ACT facilitated modulation of myeloid cells 

by inducing a shift from MDSCs toward immune-stimulatory myeloid cells, resulting in a ratio 

of MDSCs to T cells below the optimal suppressive level. However, highly proliferative tumor 

cells were sensitive to immunoediting due to the activity of ACT. The escape mechanisms 

induced by ACT included the induction of PD-L1 and loss of neu antigen on metastatic tumor 
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cells. A higher expression of PD-L1 in the no-ACT group compared with the ACT group 

suggests that endogenous innate immune response may be involved in the upregulation of PD-L1 

on tumor cells. It was reported that innate IFN-Ȗ is essential for upregulation of PD-L1 

expression (207). Intriguingly, an adaptive immune response following ACT reduced PD-L1 

expression on tumor cells compared with the no-ACT group, though it was still significantly 

higher than MMC tumor prior to challenge. This is important because reprogrammed T cells and 

NKT cells that were used for ACT expressed PD-1, and PD-1 expression was sustained after 

ACT. However, reprogrammed T cells also produce perforin and granzyme B (16) allowing 

them to induce apoptosis in tumor cells before they begin to upregulate PD-L1 mediated by IFN-

Ȗ. IFN-Ȗ produced by reprogrammed T cells increases the level of PD-L1 expression compared 

with control MMC. Therefore, prolonged survival in the ACT group could be associated with 

lower expression of PD-L1 in MMC compared with no-ACT group, though animals succumbed 

to metastatic tumor, as their tumors begin to undergo antigen loss by downregulating the 

expression of neu. Therefore, our data suggest that tumors utilize numerous mechanisms to 

change during cell division and escape from immunotherapy. These mechanisms were shown to 

overcome tumor immune surveillance and reduce the efficacy of immunotherapy (142, 144, 148, 

208). On the other hand, dormant tumor cells which were established by chemotherapy or RT 

became chemo-resistant or RT-resistant but remained sensitive to immunotherapy. Our findings 

are consistent with the reports on the efficacy of ACT in patients with metastatic melanoma 

utilizing tumor-infiltrating lymphocytes (TIL) grown in IL-2. ACT utilizing IL-2 expanded TIL 

resulted in tumor regression in 49% of patients (209). When ACT was combined with total body 

irradiation (TBI) objective responses increased to 72%. Among treated groups, 20% had 
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complete tumor regression and over 10 years relapse-free survival (76). Thus far, of the 34 

complete responders in the NCI trials, one has recurred (210). 

Dormant tumor cells contain Ki67+ indolent cells and Ki67- quiescent cells. Indolent tumor cells 

are still capable of proliferating, but represent balanced cellular proliferation and death; therefore 

they generally remain dormant. Thus, due to their proliferative nature, they remained sensitive to 

immunoediting and escape. On the contrary, Ki67- quiescent dormant cells displayed a reduced 

potential for immunoediting; they failed to upregulate PD-L1 in the presence of IFN- 

stimulation. Our data suggest that administration of immunotherapy after the completion of 

conventional cancer therapies, when tumor dormancy is established, could effectively target 

dormant tumor cells. The challenge, however, is to develop a combinatorial chemotherapeutic 

strategy which predominantly establishes quiescent dormancy so that tumors are incapable of 

escape from subsequent immunotherapy. 

Recently, there have been dramatic advances in the field of cancer immunotherapy. However, 

these advances have been limited to increasing patients’ survival for a limited period of time 

rather than offering a cure for cancer patients. For instance, Sipuleucel-T (Provenge) has 

extended survival of patients with metastatic prostate cancer by a median of 4.1 months (211). 

Blockade of immune checkpoint molecules has also prolonged survival in patients with advanced 

cancer. For instance, anti-CTLA-4 antibody (Ipilimumab) therapy resulted in a 3.5-month gain in 

overall survival in patients with stage III or IV metastatic cutaneous melanoma (212). 

Cumulative response rates for anti-PD-1 antibody therapy among patients with non-small-cell 

lung cancer, melanoma, and renal-cell cancer were 18%, 28%, and 27%, respectively. Responses 

were durable such that 20 of 31 responses lasted 1 year or more in patients with 1 year or more 

of follow-up (213). On the other hand, administration of immunotherapy in prophylactic settings 
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has been successful against many infectious diseases, as well as against HPV-associated cervical 

cancer. In addition, the application of stem cell transplantation and donor-derived lymphocyte 

infusion is successful only against MRD rather than against active and advanced stage disease. 

Therefore, it is reasonable to expect that administration of immunotherapy during MRD or tumor 

dormancy could prevent distant recurrence of breast cancer, thereby eliminating mortality 

associated with the advanced stages of the disease.  

We also demonstrated that ACT utilizing reprogrammed T cells and CD25+ NKT cells resulted 

in the modulation of Gr1+CD11b+ MDSCs toward Gr1-CD11b-/lo immune stimulatory myeloid 

cells. These findings support our previous in vitro observations as well as the observations by 

other groups showing that NKT cells can convert MDSCs to APCs (16, 52-54, 187). We have 

previously reported that Gr1+CD11b+ MDSCs became immune stimulatory cells in the presence 

of NKT cells; fractionated reprogrammed T cells alone resulted in the failure of ACT in 

protecting animals from MMC tumor challenge (16). Here, we showed that conversion of 

MDSCs to Gr1-CD11b-/lo immune stimulatory myeloid cells takes place only in a fraction all of 

MDSCs. The remaining MDSCs persisted in their suppressive function, in vitro. Importantly, 

however, the proportion of T cells to MDSCs, in vivo, was found to be below the optimal 

suppressive ratio. It is yet to be determined if Gr1-CD11b-/lo immune stimulatory myeloid cells 

are predominantly converted from granulocytic or monocytic MDSCs. We have reported that 

MDSCs in MMC-bearing animals are mainly composed of the granulocytic phenotype, though 

only monocytic MDSCs were found to be able to suppress T cell responses (27). Therefore, if 

granulocytic MDSCs are converted to Gr1-CD11b-/lo immune stimulatory cells, they could 

dominate monocytic MDSCs. This could explain why the remaining MDSCs from the ACT 

group retained their immune suppressive function in the absence of newly converted Gr1-
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CD11b-/lo immune stimulatory cells. However, the presence of newly converted immune 

stimulatory myeloid cells results in the failure of MDSCs to sufficiently suppress anti-tumor T 

cells, in vitro (16, 54). This could also explain the multifaceted function of monocytic versus 

granulocytic MDSCs in the exacerbation and amelioration of different diseases associated with 

the suppression or induction of specific types of the immune response. We have suggested that 

the term myeloid regulatory cells (Mregs) can better explain the functions of MDSCs which 

contain both monocytic and granulocytic phenotypes (214). In fact, we propose that MDSCs are 

a phenotype of Mregs which cannot be converted to immune stimulatory myeloid cells in a 

setting of cancer. In addition, controversial reports on the role of these cells in autoimmune 

diseases can be consolidated and understood in the context of their regulatory function under 

certain conditions, which is not merely limited to immune suppressive function of Gr1+CD11b+ 

Mregs. The newly converted immune stimulatory myeloid cells of the ACT group showed 

CD11bcharacteristics of APCs by expressing MHC class II as well as co-stimulatory molecules. 

However, they differed from conventional DCs or macrophages. The Gr1-CD11b-/loMHCII+ 

immune stimulatory cells that were established following ACT were also phenotypically 

different from those in tumor-bearing control mice, i.e., they differed in the expression of MHC 

class II and co-stimulatory molecules. The newly converted Gr1-CD11b-/lo myeloid cells were 

also functionally different from those in tumor-bearing control mice, as only those from the ACT 

group showed immune stimulatory function. These data suggest that ACT by using CD25+ NKT 

cells and T cells could act as in situ vaccine by converting a fraction of MDSCs to a unique APC 

which require further characterization.  

In conclusion, we demonstrate that ACT can prolong survival of animals harboring an active 

disease. Our data suggest that ACT could cure breast cancer if it is administered during tumor 
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dormancy rather than during the active state of the disease. We also identified a new type of Gr1-

CD11b-/lo immune stimulatory myeloid cell that were converted from Gr1+CD11b+ MDSCs, 

and which differed from conventional APCs. Future work to characterize the phenotype, 

function, and development of these cells could lead to strategies to harness the natural 

accumulation of MDSCs in cancer patients in order to promote their conversion to myeloid 

stimulatory cells which could lead to a more effective generation of endogenous anti-tumor 

immune responses.  
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Conclusions 

The overall results of this work suggest that currently available clinically translatable 

immunotherapeutic strategies for the treatment of breast cancer may be best implemented to 

function as a relapse prophylaxis, and provides insights into the potential to reprogram the tumor 

microenvironment to support anti-tumor immune function.  

In Chapter One, we evaluated the efficacy of treating established primary mammary carcinoma 

in the FVBN202 mouse with ACT utilizing reprogrammed immune cells, as developed by our 

group. We found this strategy to be ineffective in eliminating or inducing regression of primary 

mammary carcinoma, even after inducing the expression of highly immunogenic CTAs within 

the tumor. This suggests that established breast cancer may not represent the optimal target to 

which our immunotherapeutic strategy of ACT may be effective. In Chapter Two, we 

participated in a Phase II randomized clinical trial using Aza combined with an 

immunomodulator Rev and ACT in patients with multiple myeloma who harbored MRD. We 

demonstrated that Aza-Rev induced the expression of a panel of CTAs specifically within 

plasma cells harbored in the bone marrow. Such induction of CTA expression generated NY-

ESO-1-specific lymphocytes which were collected and later reinfused into patients as a cellular 

therapy after chemotherapy and ASCT, in order to target residual malignant cells and prevent 

disease recurrence. This strategy was effective in generating objective responses for patients with 

residual multiple myeloma. Therefore, in Chapter Three we demonstrated that ACT using 

reprogrammed NKT cells and T cells combined with modulation of tumor using Dec is effective 

in prolonging survival of animals harboring early advanced experimental metastatic mammary 

carcinoma. However, this treatment failed to eliminate the tumor because of the induction of 

tumor immunoediting and escape which is characterized by neu antigen loss/downregulation and 
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upregulation of PD-L1 in tumor cells. Importantly, dividing tumor cells were sensitive to 

immunoediting whereas quiescent dormant cells were resistant to immunoediting and escape. We 

also demonstrated the striking effect of ACT utilizing reprogrammed T and NKT cells to 

modulate the splenic myeloid cell compartment, resulting in a reduction in the frequency of 

splenic MDSCs while also stimulating the generation of a novel phenotype of immune 

stimulatory cell, which functioned to enhance endogenous anti-tumor function in vitro.   
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Future Perspective 

The results of this work suggest that utilizing ACT containing reprogrammed T cells and NKT 

cells may yield the most effective responses when used in a setting of minimal residual disease, 

during a period of dormancy after the implementation of conventional therapies. Future studies 

should investigate the ability of conventional therapeutics to induce quiescent dormancy, which 

is resistant to immunoediting and escape, followed by the administration of immunotherapy in 

order to prevent advanced stage disease. 

Furthermore, our work suggests the ACT actively functions to modulate splenic myeloid cells to 

generate cells capable of promoting anti-tumor immune responses. Additional studies are 

required to determine if such ACT-generated Gr1-CD11b-/lo myeloid stimulatory cells possess 

antigen presentation capacity, as well as if they can be categorized into a cell lineage by 

characterization of the expression of common granulocytic or monocytic proteins, such as Ly6G 

and Ly6C, respectively.  Also, it will be prudent to determine if such immune stimulatory cells 

are directly generated from MDSCs, or arise from an independent progenitor. Such information 

may prove to be essential in the development of our knowledge of the methods by which 

developing tumors usurp myelopoiesis, and may therefore generate novel strategies by which 

one may reestablish the ‘normal’ myelopoietic program to generate myeloid cells with immune 

stimulatory properties to further enhance the immune response against breast, and perhaps other 

solid tumors.  
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