38 research outputs found

    Standardized ASCE Penman-Monteith: Impact of sum-of-hourly vs. 24-hour timestep computations at reference weather station sites

    Get PDF
    ABSTRACT. The standardized ASCE Penman-Monteith (ASCE-PM) model was used to estimate grass-reference evapotran-spiration (ETo) over a range of climates at seven locations based on hourly and 24 h weather data. Hourly ETo computations were summed over 24 h periods and reported as sum-of-hourly (SOH). The SOH ASCE-PM ETo values (ETo,h,ASCE) were compared with the 24 h timestep ASCE-PM ETo values (ETo,d) and SOH ETo values using the FAO Paper 56 Penman-Monteith (FAO56-PM) method (ETo,h,FAO). The ETo,h,ASCE values were used as the basis for comparison. The ETo,d estimated higher than ETo,h,ASCE at all locations except one, and agreement between the computational timesteps was best in humid regions. The greatest differences between ETo,d and ETo,h,ASCE were in locations where strong, dry, hot winds cause advective increases in ETo. Three locations showed considerable signs of advection. Some of the differences between the timesteps was attributed to uncertainties in predicting soil heat flux and to the difficulty of ETo,d to effectively account for abrupt diurnal changes in wind speed, air temperature, and vapor pressure deficit. The ETo,h,FAO values correlated well with ETo,h,ASCE values (r2> 0.997), but estimated lower than ETo,h,ASCE at all locations by 5 % to 8%. This was due to the impact of higher surface resistance during daytime periods. Summing the ETo values over a weekly, monthly, or annual basis generally reduced the differences between ETo,d and ETo,h,ASCE. Summing the ETo,d values over multiple days and longer periods for peak ETo months resulted in inconsistent differences between the two timesteps. The results suggest a potential improvement in accuracy when using the standardized ASCE-PM procedure applied hourly rather than daily. The hourly application helps to account for abrupt changes in atmospheric conditions on ETo estimation in advective and other environments when hourly climate data are available

    Field scale limited irrigation scenarios for water policy strategies

    Get PDF
    ABSTRACT. Approaches to reducing irrigation inputs to crops have been studied for the past 50 to 60 years in research settings. Fewer efforts have been made to document limited irrigation responses over a number of seasons on commercial fields. This study compared farm−based irrigation management (FARM) with best management practices (BMP), late initiation of irrigation (LATE), and a restricted allocation (ALLOC). These irrigation management strategies each occupied 1/8 of a center pivot system in southwest Nebraska in continuous corn production, on four cooperating farms, which were replicated at the same sites for 3 to 6 years. Irrigation variables were achieved by irrigating or not irrigating, or by speeding up or slowing down the center pivot. When the grain yields and irrigation amounts were normalized each year using the FARM treatment as the basis, on average for three of four locations, the BMP treatment yielded equal to the FARM treatment, the LATE treatment yielded 93 % of the FARM treatment and the ALLOC yielded 84 % of the FARM treatment. At the same time, it took 76 % and 57 % of the water for the LATE and ALLOC treatments, respectively, to achieve these yields. The adjusted gross returns (yield price – irrigation treatment costs) of the irrigation treatments were analyzed for each location. When the gross returns were normalized using the FARM treatment as the basis, FARM and BMP returns were equal across combinations of high and low input commodity prices and pumping costs. The LATE treatment gross return was 95 % of FARM return. The gross return for the ALLOC treatment was 85 % to 91 % of the FARM treatment. The higher the water costs, the lower the difference between the highest and lowest returning water treatments. Relationships between evapotranspiratio

    Variability Analyses of Alfalfa-Reference to Grass-Reference Evapotranspiration Ratios in Growing and Dormant Seasons

    Get PDF
    Alfalfa-reference evapotranspiration (ETr) values sometimes need to be converted to grass-reference ET (ETo), or vice versa, to enable crop coefficients developed for one reference surface to be used with the other. However, guidelines to make these conversions are lacking. The objectives of this study were to: (1) develop ETr to ETo ratios (Kr values) for different climatic regions for the growing season and nongrowing (dormant) seasons; and (2) determine the seasonal behavior of Kr values between the locations and in the same location for different seasons. Monthly average Kr values from daily values were developed for Bushland, (Tex.), Clay Center, (Neb.), Davis, (Calif.), Gainesville, (Fla.), Phoenix (Ariz.), and Rockport, (Mo.) for the calendar year and for the growing season (May– September). ETr and ETo values that were used to determine Kr values were calculated by several methods. Methods included the standardized American Society of Civil Engineers Penman–Monteith (ASCE-PM), Food and Agriculture Organization Paper 56 (FAO56) equation (68), 1972 and 1982 Kimberly-Penman, 1963 Jensen-Haise, and the High Plains Regional Climate Center (HPRCC) Penman. The Kr values determined by the same and different methods exhibited substantial variations among locations. For example, the Kr values developed with the ASCE-PM method in July were 1.38, 1.27, 1.32, 1.11, 1.28, and 1.19, for Bushland, Clay Center, Davis, Gainesville, Phoenix, and Rockport, respectively. The variability in the Kr values among locations justifies the need for developing local Kr values because the values did not appear to be transferable among locations. In general, variations in Kr values were less for the growing season than for the calendar year. Average standard deviation between years was maximum 0.13 for the calendar year and maximum 0.10 for the growing season. The ASCE-PM Kr values had less variability among locations than those obtained with other methods. The FAO56 procedure Kr values had higher variability among locations, especially for areas with low relative humidity and high wind speed. The 1972 Kim-Pen method resulted in the closest Kr values compared with the ASCE-PM method at all locations. Some of the methods, including the ASCE-PM, produced potentially unrealistically high Kr values (e.g., 1.78, 1.80) during the nongrowing season, which could be due to instabilities and uncertainties that exist when estimating ETr and ETo in dormant season since the hypothetical reference conditions are usually not met during this period in most locations. Because simultaneous and direct measurements of the ETr and ETo values rarely exist, it appears that the approach of ETr to ETo ratios calculated with the ASCE-PM method is currently the best approach available to derive Kr values for locations where these measurements are not available. The Kr values developed in this study can be useful for making conversions from ETr to ETo, or vice versa, to enable using crop coefficients developed for one reference surface with the other to determine actual crop water use for locations, with similar climatic characteristics of this study, when locally measured Kr values are not available

    Functional analysis of filipin tailoring genes from Streptomyces filipinensis reveals alternative routes in filipin III biosynthesis and yields bioactive derivatives

    Full text link
    Background: Streptomyces filipinensis is the industrial producer of filipin, a pentaene macrolide, archetype of non-glycosylated polyenes, and widely used for the detection and the quantitation of cholesterol in biological membranes and as a tool for the diagnosis of Niemann-Pick type C disease. Genetic manipulations of polyene biosynthetic pathways have proven useful for the discovery of products with improved properties. Here, we describe the late biosynthetic steps for filipin III biosynthesis and strategies for the generation of bioactive filipin III derivatives at high yield. Results: A region of 13,778 base pairs of DNA from the S. filipinensis genome was isolated, sequenced, and characterized. Nine complete genes and two truncated ORFs were located. Disruption of genes proved that this genomic region is part of the biosynthetic cluster for the 28-membered ring of the polyene macrolide filipin. This set of genes includes two cytochrome P450 monooxygenase encoding genes, filC and filD, which are proposed to catalyse specific hydroxylations of the macrolide ring at C26 and C1' respectively. Gene deletion and complementation experiments provided evidence for their role during filipin III biosynthesis. Filipin III derivatives were accumulated by the recombinant mutants at high yield. These have been characterized by mass spectrometry and nuclear magnetic resonance following high-performance liquid chromatography purification thus revealing the post-polyketide steps during polyene biosynthesis. Two alternative routes lead to the formation of filipin III from the initial product of polyketide synthase chain assembly and cyclization filipin I, one trough filipin II, and the other one trough 1'-hydroxyfilipin I, all filipin III intermediates being biologically active. Moreover, minimal inhibitory concentration values against Candida utilis and Saccharomyces cerevisiae were obtained for all filipin derivatives, finding that 1'-hydroxyfilipin and especially filipin II show remarkably enhanced antifungal bioactivity. Complete nuclear magnetic resonance assignments have been obtained for the first time for 1'-hydroxyfilipin I. Conclusions: This report reveals the existence of two alternative routes for filipin III formation and opens new possibilities for the generation of biologically active filipin derivatives at high yield and with improved propertiesThis work was supported by the Spanish Ministerio de Economía y Competitividad (Grants BIO2010-19911 and BIO2013-42983-P to JFA), F.P.U. fellowships of the Ministerio de Educación, Cultura y Deporte (AP2005-3644 to JSA, AP2007-02055 to TDP, FPU13/01537 to AP), a contract from the Junta de Castilla y León cofinanced by the European Social Fund (to EGB), and a fellowship from the Portuguese Fundação para a Ciência e a Tecnologia (SFRH/BD/64006/2009 to CMV

    LAL Regulators SCO0877 and SCO7173 as Pleiotropic Modulators of Phosphate Starvation Response and Actinorhodin Biosynthesis in Streptomyces coelicolor

    Get PDF
    LAL regulators (Large ATP-binding regulators of the LuxR family) constitute a poorly studied family of transcriptional regulators. Several regulators of this class have been identified in antibiotic and other secondary metabolite gene clusters from actinomycetes, thus they have been considered pathway-specific regulators. In this study we have obtained two disruption mutants of LAL genes from S. coelicolor (Δ0877 and Δ7173). Both mutants were deficient in the production of the polyketide antibiotic actinorhodin, and antibiotic production was restored upon gene complementation of the mutants. The use of whole-genome DNA microarrays and quantitative PCRs enabled the analysis of the transcriptome of both mutants in comparison with the wild type. Our results indicate that the LAL regulators under study act globally affecting various cellular processes, and amongst them the phosphate starvation response and the biosynthesis of the blue-pigmented antibiotic actinorhodin. Both regulators act as negative modulators of the expression of the two-component phoRP system and as positive regulators of actinorhodin biosynthesis. To our knowledge this is the first characterization of LAL regulators with wide implications in Streptomyces metabolism

    Primed acclimation of cultivated peanut (Arachis hypogaea L.) through the use of deficit irrigation timed to crop developmental periods

    Full text link
    Water-deficits and high temperatures are the predominant factors limiting peanut production across the U.S., either because of regional aridity or untimely rainfall events during crucial crop developmental periods. In the southern High Plains of west Texas and eastern New Mexico, low average annual rainfall (450. mm) and high evaporative demand necessitates the use of significant irrigation in production systems. In this west Texas study, the primary objective was to develop irrigation schemes that maximized peanut yield and grade while reducing overall water consumption. Therefore, a large-scale field experiment was established in 2005 and 2006 that utilized 15 treatment combinations of differing rates of irrigation (50, 75, and 100% of grower applied irrigation) applied at different periods of peanut development (early, middle, and late season). Precipitation patterns and ambient temperatures showed greater stress levels in 2006 which likely reduced yields across all treatments in comparison to 2005. Yields were reduced 26 (2005) and 10% (2006) in the lowest irrigation treatment (50% full season) compared with full irrigation (100% full season); but early-season water deficit (50 and 75% in the first 45. days after planting) followed by 100% irrigation in the mid- and late-seasons were successful at sustaining yield and/or crop value. Root growth was significantly enhanced at 50% irrigation compared with 100% irrigation, through greater root length, diameter, surface area, and depth, suggesting greater access to water during mid- and late-season periods. These results suggest that early to mid-season deficit irrigation has the potential to maintain peanut yield without altering quality, and to substantially reduce water use in this semi-arid environment

    Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years

    No full text
    During the last 30 years Vegetation Indices (VI) have been extensively used for tracing and monitoring vegetation conditions, such as health, growth levels, production, water and nutrients stress, etc. In this paper the characteristics of over 20 VIs based on the VNIR spectrum are described in order to provide the reader with adequate material to form a picture of their nature and purpose. It is not, though, a review article due to the fact that a huge volume of work exists all over the world and a simple lining up of the related papers would not contribute to an understanding of the usefulness of VIs. A limited number of review work is included, together with research results from various operational and research applications of VI for wheat damage assessment in Northern Greece
    corecore