26 research outputs found

    Jordan Pairs, E6 and U-Duality in Five Dimensions

    Full text link
    By exploiting the Jordan pair structure of U-duality Lie algebras in D = 3 and the relation to the super-Ehlers symmetry in D = 5, we elucidate the massless multiplet structure of the spectrum of a broad class of D = 5 supergravity theories. Both simple and semi-simple, Euclidean rank-3 Jordan algebras are considered. Theories sharing the same bosonic sector but with different supersymmetrizations are also analyzed.Comment: 1+41 pages, 1 Table; v2 : a Ref. and some comments adde

    Observations on Integral and Continuous U-duality Orbits in N=8 Supergravity

    Full text link
    One would often like to know when two a priori distinct extremal black p-brane solutions are in fact U-duality related. In the classical supergravity limit the answer for a large class of theories has been known for some time. However, in the full quantum theory the U-duality group is broken to a discrete subgroup and the question of U-duality orbits in this case is a nuanced matter. In the present work we address this issue in the context of N=8 supergravity in four, five and six dimensions. The purpose of this note is to present and clarify what is currently known about these discrete orbits while at the same time filling in some of the details not yet appearing in the literature. To this end we exploit the mathematical framework of integral Jordan algebras and Freudenthal triple systems. The charge vector of the dyonic black string in D=6 is SO(5,5;Z) related to a two-charge reduced canonical form uniquely specified by a set of two arithmetic U-duality invariants. Similarly, the black hole (string) charge vectors in D=5 are E_{6(6)}(Z) equivalent to a three-charge canonical form, again uniquely fixed by a set of three arithmetic U-duality invariants. The situation in four dimensions is less clear: while black holes preserving more than 1/8 of the supersymmetries may be fully classified by known arithmetic E_{7(7)}(Z) invariants, 1/8-BPS and non-BPS black holes yield increasingly subtle orbit structures, which remain to be properly understood. However, for the very special subclass of projective black holes a complete classification is known. All projective black holes are E_{7(7)}(Z) related to a four or five charge canonical form determined uniquely by the set of known arithmetic U-duality invariants. Moreover, E_{7(7)}(Z) acts transitively on the charge vectors of black holes with a given leading-order entropy.Comment: 43 pages, 8 tables; minor corrections, references added; version to appear in Class. Quantum Gra

    Spectra of PP-Wave Limits of M-/Superstring Theory on AdS_p x S^q Spaces

    Get PDF
    In this paper we show how one can obtain very simply the spectra of the PP-wave limits of M-theory over AdS_7(4) x S^4(7) spaces and IIB superstring theory over AdS_5 x S^5 from the oscillator construction of the Kaluza-Klein spectra of these theories over the corresponding spaces. The PP-wave symmetry superalgebras are obtained by taking the number P of ``colors'' of oscillators to be large (infinite). In this large P limit, the symmetry superalgebra osp(8*|4) of AdS_7 x S^4 and the symmetry superalgebra osp(8|4,R) of AdS_4 x S^7 lead to isomorphic PP-wave algebras, which is the semi-direct sum of su(4|2) with H^(18,16), while the symmetry superalgebra su(2,2|4) of AdS_5 x S^5 leads to the semi-direct sum of [psu(2|2) + psu(2|2) + u(1)] with H^(16,16) as its PP-wave algebra [H^(m,n) denoting a super-Heisenberg algebra with m bosonic and n fermionic generators]. The zero mode spectra of M-theory or IIB superstring theory in the PP-wave limit corresponds simply to the unitary positive energy representations of these algebras whose lowest weight vector is the Fock vacuum of all the oscillators. General positive energy supermultiplets including those corresponding to higher modes can similarly be constructed by the oscillator method.Comment: Typos corrected; references added; minor modifications to improve presentation; 37 pages, LaTeX fil

    Lectures on on Black Holes, Topological Strings and Quantum Attractors (2.0)

    Full text link
    In these lecture notes, we review some recent developments on the relation between the macroscopic entropy of four-dimensional BPS black holes and the microscopic counting of states, beyond the thermodynamical, large charge limit. After a brief overview of charged black holes in supergravity and string theory, we give an extensive introduction to special and very special geometry, attractor flows and topological string theory, including holomorphic anomalies. We then expose the Ooguri-Strominger-Vafa (OSV) conjecture which relates microscopic degeneracies to the topological string amplitude, and review precision tests of this formula on ``small'' black holes. Finally, motivated by a holographic interpretation of the OSV conjecture, we give a systematic approach to the radial quantization of BPS black holes (i.e. quantum attractors). This suggests the existence of a one-parameter generalization of the topological string amplitude, and provides a general framework for constructing automorphic partition functions for black hole degeneracies in theories with sufficient degree of symmetry.Comment: 103 pages, 8 figures, 21 exercises, uses JHEP3.cls; v5: important upgrade, prepared for the proceedings of Frascati School on Attractor Mechanism; Sec 7 was largely rewritten to incorporate recent progress; more figures, more refs, and minor changes in abstract and introductio

    Drug-induced amino acid deprivation as strategy for cancer therapy

    Full text link

    SciPy 1.0: fundamental algorithms for scientific computing in Python.

    Get PDF
    SciPy is an open-source scientific computing library for the Python programming language. Since its initial release in 2001, SciPy has become a de facto standard for leveraging scientific algorithms in Python, with over 600 unique code contributors, thousands of dependent packages, over 100,000 dependent repositories and millions of downloads per year. In this work, we provide an overview of the capabilities and development practices of SciPy 1.0 and highlight some recent technical developments

    Results and analysis of earth tide observations with the borehole tiltmeter in Poltava

    No full text
    Results of harmonic analysis of eight years earth tides observations with the borehole tiltmeter of the Poltava Gravimetric Observatory are presented. Hight-precision parameters of the main tidal waves and Love´s numbers h and k which practically coincide with similar data from  tiltmetric and gravimetric observations in 25 stations of Ukraine are received. The azimuthal inequality of a factor γ in the NS and EW directions isn't revealed. Resonant influence of the liquid core of Earth coincides with calculated theoretically
    corecore