28 research outputs found

    Electric charge of atmospheric nanoparticles and its potential implications with human health

    Get PDF
    This research presents a pilot project developed within the framework of the COST Action 15,211 in which atmospheric nanoparticles were measured in July 2018, in a maritime environment in the city of Santander in Northern Spain. ELPI (R) + (Electrical low-Pressure Impactor) was used to measure nanoparticle properties (electric charge, number, size distribution and surface area) from 6 nm to 10,000 nm with 14 size channels. This study focused on the range between 6 and 380 nm. It considered atmospheric nanoparticle electric charge with surface area, deposited and number by size distribution at human respiratory tract regions in a standard person in Santander according to the human respiratory tract model of ICRP 94. An empirical distribution of nanoparticles deposited in the human respiratory tract model and its electric charge is presented for the city of Santander as the main output. Percentages of total and regional deposition in human respiratory tract model were calculated for the Atlantic climate. Nanoparticles have shown an alveolar surface area deposition plateau with a size distribution range between 6 nm to 150 nm. Negative charge of nanoparticles was clearly associated with primary atmospheric nanoparticles being mainly deposited in the alveolar region where a Brownian mechanism of deposition is predominant. We can demonstrate that electric charge may be a key element in explaining Brownian deposition of the smallest particles in the human respiratory tract and that it can be linked to theoretical positive and negative impacts on human health according to several biometeorological studies. To support our analysis, aerosol samples were characterized with transmission electron microscopy and Confocal Raman spectrometer to determinate morphology, size, chemical composition, and structure. The toxicological effects of the samples with the alveolar surface area had a greater deposition, remain to be studied.Peer reviewe

    Study of PM10 and PM2.5 levels in three European cities: Analysis of intra and inter urban variations

    Full text link
    In the present paper, 1-year PM10 and PM 2.5 data from roadside and urban background monitoring stations in Athens (Greece), Madrid (Spain) and London (UK) are analysed in relation to other air pollutants (NO,NO2,NOx,CO,O3 and SO2)and several meteorological parameters (wind velocity, temperature, relative humidity, precipitation, solar radiation and atmospheric pressure), in order to investigate the sources and factors affecting particulate pollution in large European cities. Principal component and regression analyses are therefore used to quantify the contribution of both combustion and non-combustion sources to the PM10 and PM 2.5 levels observed. The analysis reveals that the EU legislated PM 10 and PM2.5 limit values are frequently breached, forming a potential public health hazard in the areas studied. The seasonal variability patterns of particulates varies among cities and sites, with Athens and Madrid presenting higher PM10 concentrations during the warm period and suggesting the larger relative contribution of secondary and natural particles during hot and dry days. It is estimated that the contribution of non-combustion sources varies substantially among cities, sites and seasons and ranges between 38-67% and 40-62% in London, 26-50% and 20-62% in Athens, and 31-58% and 33-68% in Madrid, for both PM10 and PM 2.5. Higher contributions from non-combustion sources are found at urban background sites in all three cities, whereas in the traffic sites the seasonal differences are smaller. In addition, the non-combustion fraction of both particle metrics is higher during the warm season at all sites. On the whole, the analysis provides evidence of the substantial impact of non-combustion sources on local air quality in all three cities. While vehicular exhaust emissions carry a large part of the risk posed on human health by particle exposure, it is most likely that mitigation measures designed for their reduction will have a major effect only at traffic sites and additional measures will be necessary for the control of background levels. However, efforts in mitigation strategies should always focus on optimal health effects

    Glossary on atmospheric electricity and its effects on biology

    Full text link
    [EN] There is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms. Its main purpose is to facilitate the process of learning and communication among the different scientific disciplines working on this topic. While some definitions come from existing sources, other concepts have been re-defined to better reflect the existing and emerging scientific needs of this multidisciplinary and transdisciplinary area of research.This paper is based upon work from the COST Action "Atmospheric Electricity Network: coupling with the Earth System, climate and biological systems (ELECTRONET)," supported by COST (European Cooperation in Science and Technology). AO received funding from Poland Ministry of Science and Higher Education for statutory research of the Institute of Geophysics, Polish Academy of Sciences (Grant No 3841/E-41/S/2019).Fdez-Arroyabe, P.; Kourtidis, K.; Haldoupis, C.; Savoska, S.; Matthews, J.; Mir, LM.; Kassomenos, P.... (2021). Glossary on atmospheric electricity and its effects on biology. International Journal of Biometeorology. 65(1):5-29. https://doi.org/10.1007/s00484-020-02013-9S529651Adrovic F (2012) Editor, Gamma radiation, IntechOpen.Alberts B (2014). Molecular biology of the cell (6th ed.). New York. ISBN 9780815344322Ambus Per, (2015) Sophie Zechmeister-Boltenstern Sophie, in Biology of the Nitrogen Cycle, 2007.G.P. Robertson1, P.M. Groffman2, in Soil Microbiology, Ecology and Biochemistry (4th Edition)Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Trans Microwave Theory Techn 61(5):2031–2045. https://doi.org/10.1109/TMTT.2013.2250298Arnold F (1986) Atmospheric ions. Stud Environ Sci 26(103-133):135–142Barrington-Leigh CP, Inan US, Stanley M (2001) Identification of sprites and elves with intensified video and broadband array photometry. J Geophys Res 106(2):1741Bazilevskaya G (2000) Observations of variability in cosmic rays. Space Sci Rev 94:25–38. https://doi.org/10.1023/A:1026721912992Benson D, Markovich A, Lee SH (2010) Ternary homogeneous nucleation of H2SO, NH3, H2O under conditions relevant to the lower troposphere. Atmos Chem Phys 10(9):22395–22414Bonnafous P et al (1999) The generation of reactive-oxygen species associated with long-lasting pulse-induced electropermeabilization of mammalian cells is based on a non-destructive alteration of the plasma membrane. Biochim et BiophysActa (BBA) - Biomembr 1461:123–134. https://doi.org/10.1016/S0005-2736(99)00154-6BĂłr (2013) Optically perceptible characteristics of sprites observed in Central Europe in 2007-2009. J Atmos Sol Terr Phys 92:151–177. https://doi.org/10.1016/j.jastp.2012.10.008Bowker GE, Crenshaw HC (2007) Electrostatic forces in wind-pollination, Part 1: Measurement of the electrostatic charge on pollen. Atmos Environ 41(8):1587–1595Buonsanto MJ (1999) Ionospheric storms–a review. Space Sci Rev 88:563–601Chafai DE et al (2019) Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater 31:e1903636Chalmers JA (1949) Atmospheric electricity, 1st edn. Pergamon Press, OxfordChilingarian A, Soghomonyan S, Khanikyanc Y, Pokhsraryan D (2019) On the origin of particle fluxes from thunderclouds. Astropart Phys 105:54–62Cifra M, Pospíšil P (2014) Ultra-weak photon emission from biological samples: definition, mechanisms, properties, detection and applications. J Photochem Photobiol B Biol 139:2–10. https://doi.org/10.1016/j.jphotobiol.2014.02.009Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105(3):223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003Cifra M, Apollonio F, Liberti M et al (2020) Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01885-1Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340:66–69Clarke D, Morley E, Robert D (2017) The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A 203(9):737–748Corbet SA, Beament J, Eisikowitch D (1982) Are electrostatic forces involved in pollen transfer? Plant Cell Environ 5(2):125–129Daintith and Gould (2006) The facts on file dictionary of astronomy/edited by John Daintith, William Gould New York, NY: Facts on File, c1994. Call # 520.3 FA. “Cosmic rays are a global source of ionization distributed through the Galaxy.” Source: Dalgarno, A. (2006), InterstelDal Maso M, Kulmala M, Lehtinen KEJ, Mäkelä JM, Aalto P, O’Dowd CD (2002) Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal forest boundary layers. J Geophys Res 107. https://doi.org/10.1029/2001jd00Dal Maso M, Kulmala M, Riipinen I, Wagner R, Hussein T, Aalto PP, Lehtinen KEJ (2005) Formation and growth of fresh atmospheric aerosols: eight years of aerosol size distribution data from SMEAR II, Hyytiälä, Finland. Boreal Environ Res 1:2005Diaz AF, Felix-Navarro RM (2004) A semi-quantitative tribo-electric series for polymeric materials: the influence of chemical structure and properties. J Electrost 62(4):277–290. https://doi.org/10.1016/j.elstat.2004.05.005Djafer D, Irbah A (2013) Estimation of atmospheric turbidity over GhardaĂŻa city. Atmos Res, Elsevier 128:76–84. https://doi.org/10.1016/j.atmosres.2013.03.009ff.ffhal-00801475fDusenbery DB (1992) Sensory ecology. W.H. Freeman, New York ISBN 0-7167-2333-6EC-GPHSW (2013) European Commission. Guidance on the protection of the health and safety of workers from the potential risks related to nanomaterials at work-guidance for employers and health and safety practitioners. BrusselsEncyclopedia Britannica, (2019) https://www.britannica.com/ Accessed 1.10.2019European Committee for Standardization (1993) CEN-EN 481-workplace atmospheres-size fraction definitions for measurement of airborne particles.Fernandez de Arroyabe P, Lecha Estela L, Schimt F (2017) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 2018:733–740. https://doi.org/10.1007/s00484-017-1398-xFeynman R (1970) The Feynman lectures on physics Vol II Addison-Wesley Publishing Longman.Finlay CC et al (2010) International Geomagnetic Reference Field: the eleventh generation. Geophys J Int 183(3):1216–1230Fishman GJ, Bhat PN, Mallozzi R, Horack JM, Koshut T, Kouveliotou C, Pendleton GN, Meegan CA, Wilson RB, Paciesas WS, Goodman SJ, Christian HJ (1994) Discovery of intense gamma-ray flashes of atmospheric origin. Science 264(5163):1313–1316. https://doi.org/10.1126/science.264.5163.1313Forbush SE (1937) On the effects in cosmic-ray intensity observed during the recent magnetic storm. Phys Rev 51(12):1108–1109. https://doi.org/10.1103/PhysRev.51.1108.3Franz RC, Nemzek RJ, Winckler JR (1990) Television image of a large upward electrical discharge above a thunderstorm system. Science 249:48–51Freeman S, Quilin K, Allison L (1965) Biological science 5th edition. (2013) Pearson Publishing.p.1059.Fullekrug, M., and M. J. Rycroft (2006) The contribution of sprites to the global atmospheric electric circuit. Earth Planets Space 58(9):1193–1196Fundamentals of Electronics (1965) Volume 1b — Basic Electricity - Alternating Current. Bureau of Naval Personnel. 1965. p. 197GFCS. WMO-WHO Global Framework for Climate Services (GFCS) (2020) http://www.wmo.int/gfcs/about-gfcs, Accessed 1.10.2019Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VM (1994) What is a geomagnetic storm? J Geophys Res Space 99(A4):5771–5792. https://doi.org/10.1029/93JA02867GSFT - Glossary for the Solar Flare Theory (n.d.) web site by Gordon Holman and Sarah Benedict. Responsible NASA Official: Gordon D. Holman, Heliophysics Science Division, NASA/Goddard Space Flight Center, Solar Physics Laboratory / Code 671, [email protected] C (1998) Turbidity determination from broadband irradiance measurements: a detailed multi-coefficient approach. J Appl Meteorol 37:414–435Gunn R (1954) Diffusion charging of atmospheric droplets by ions, and the resulting combination coefficients. J Atmos Sci 11(5):339–347Haldoupis C (2012) Midlatitude sporadic E. A typical paradigm of atmosphere-ionosphere coupling. Space Sci Rev 168:441–461Handbook of Biological Effects of Electromagnetic Fields (third), (2007) Edited by Frank S. Barnes and Ben Greenebaum, 2007, CRC Press Taylor & Francis Group Boca Raton 33487-32742Hargreaves JK (1992) The solar-terrestrial environment. Cambridge Atmospheric and Space Science Series. Cambridge University PressHarrison RG (2000) Cloud formation and the possible significance of charge for atmospheric condensation and ice nuclei. Space Sci Rev 94(1):381–396Harrison RG (2013) The Carnegie curve. Surv Geophys 34:209–232. https://doi.org/10.1007/s10712-012-9210-2Harrison RG, Nicoll KA (2018) Fair weather criteria for atmospheric electricity measurements. J Atmos Sol Terr Phys 179:239–250Harrison RG, Tammet H (2008) Ions in the terrestrial atmosphere and other solar system atmospheres. Space Sci Rev 137:107–118. https://doi.org/10.1007/s11214-008-9356-xHayakawa M, Hattori K, Ando Y (2004) Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater 124(2004):72–79Hekstra DR et al (2016) Electric-field-stimulated protein mechanics. Nature 540.7633(2016):400Hinds W C (1982, 1999) Aerosol technology: properties, behavior and measurement of airborne particles, 2nd edn. Wiley, New York.Hirsikko A, Nieminen T, GagnĂ© S, Lehtipalo K, Manninen HE, Ehn M, Hõrrak U, Kerminen VM, Laakso L, McMurry PH, Mirme A, Mirme S, Petäjä T, Tammet H, Vakkari V, Vana M, Kulmala M (2011) Atmospheric ions and nucleation: a review of observations. Atmos Chem Phys 11:767–798. https://doi.org/10.5194/acp-11-767-2011Hodgkin AL, Huxley AF (1952) Aquantitative description of membrane current and its application to conduction and excitation in nerves. J Physiol 117(4):500–544 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392413/Hoppel WA (1969) Application of three-body recombination and attachment coefficients to tropospheric ions. Pure Appl Geophys 75:158–166Hörrak U, Salm J, Tammet H (2000) Statistical characterization of air ion mobility spectra at Tahkuse Observatory: classification of air ions. J Geophys Res 105(D7):9291–9302Hundhausen AJ (1995) The solar wind. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, pp 91–198Hunting, E.R., Matthews, J., de ArrĂłyabe Hernáez, P.F., England, S.J., Kourtidis, K., Koh, K., Nicoll, K., Harrison, R.G., Manser, K., Price, C. and Dragovic, S., (2020). Challenges in coupling atmospheric electricity with biological systems. u, pp.1-14. https://doi.org/10.1007/s00484-020-01960-7ICRP (1994) International Commission on Radiological Protection Human respiratory tract model for radiological protection, Annual 66.Imyanitov IM (1957) Instruments and methods for the study of atmospheric electricity (in Russian), Gostekhizdat.Imyanitov IM, Chubarina EV (1967) Electricity of free atmosphere, (Gidrometeoizdat, 1965) NASA/NSF Israel Program for Scientific Translations.IsraĂ«l H (1971) Atmospheric electricity, Vol. I, Fundamentals, conductivity, ions, Israel Program for Scientific Translations, JerusalemIsraĂ«l H (1973) Atmospheric electricity, Vol. II, Fields, charges, currents, Israel Program for Scientific Translations, Jerusalem.James MR, Wilson L, Lane SJ, Gilbert JS, Mather TA, Harrison RG, Martin RS (2008) Electrical charging of volcanic plumes, Space Sci. Rev. 137:399–418. https://doi.org/10.1007/s11214-008-9362-zJärvinen A, Aitomaa M, Rostedt A, Keskinen J, Yli-Ojanperä J (2014) Calibration of the new electrical low pressure impactor (ELPI+). J Aerosol Sci 69:150–159. https://doi.org/10.1016/j.jaerosci.2013.12.006Kathren, RL (1998) NORM sources and their origins. Applied Radiation and Isotopes, 49(3):149–168.Kirkby J, Duplissy J, Sengupta K, Frege C, Gordon H, Williamson C, Heinritzi M, Simon M, Yan C, Almeida J, Tröstl J, Nieminen T, Ortega IK, Wagner R, Adamov A, Amorim A, Bernhammer AK, Bianchi F, Breitenlechner M, Brilke S, Chen X, Craven J, Dias A, Ehrhart S, Flagan RC, Franchin A, Fuchs C, Guida R, Hakala J, Hoyle CR, Jokinen T, Junninen H, Kangasluoma J, Kim J, Krapf M, KĂĽrten A, Laaksonen A, Lehtipalo K, Makhmutov V, Mathot S, Molteni U, Onnela A, Peräkylä O, Piel F, Petäjä T, Praplan AP, Pringle K, Rap A, Richards NAD, Riipinen I, Rissanen MP, Rondo L, Sarnela N, Schobesberger S, Scott CE, Seinfeld JH, Sipilä M, Steiner G, Stozhkov Y, Stratmann F, TomĂ© A, Virtanen A, Vogel AL, Wagner AC, Wagner PE, Weingartner E, Wimmer D, Winkler PM, Ye P, Zhang X, Hansel A, Dommen J, Donahue NM, Worsnop DR, Baltensperger U, Kulmala M, Carslaw KS, Curtius J (2016) Ion-induced nucleation of pure biogenic particles. Nature 533:521–526. https://doi.org/10.1038/nature17953Kivelson MG, Russel ZT (1995) Introduction to space physics. Cambridge University Press, CambridgeKulkarni P, Baron PA, Willeke K (2011) Aerosol measurement: principles, techniques, and applications, 3rd edn. Wiley, New YorkKulmala M, Petäjä T, Nieminen T, Sipilä M, Manninen HE, Lehtipalo K, Dal Maso M, Aalto PP, Junninen H, Paasonen P, Riipinen I, Lehtinen KE, Laaksonen A, Kerminen VM (2012) Measurement of the nucleation of atmospheric aerosol particles. Nat Protoc 7(9):1651–1667. https://doi.org/10.1038/nprot.2012.091https://www.nature.com/articles/nprot.2012.091Kulmala M, Petaja T, Ehn M, Thornton J, Sipila M, Worsnop DR, Kerminen VM (2014) Chemistry of atmospheric nucleation: on the recent advances on precursor characterization and atmospheric cluster composition in connection with atmospheric new particle formation. Annu Rev Phys Chem 65:21–37L’Annunziata MF (2016) Radioactivity, ElsevierLaakso L, Anttila T, Lehtinen KEJ, Aalto PP, Kulmala M, Hõrrak U, Paatero J, Hanke M, Arnold F (2004) Kinetic nucleation and ions in boreal forest particle formation events. Atmos Chem Phys 4:2353–2366. https://doi.org/10.5194/acp-4-2353-2004Lee J-H, Jang A, Bhadri PR, Myers RR, Timmons W, Beyette FR, Papautsky I (2006) Fabrication of microelectrode arrays for in situ sensing of oxidation reduction potentials. Sensors Actuators B 115:220–226.Liberti M, Apollonio F, Merla C, D’Inzeo G (2009) Microdosimetry in the microwave range: a quantitative assessment at single cell level. IEEE Antennas Wireless Propagation Lett 8(5170009):865–868LidĂ©n G (2011) The European Commission tries to define nanomaterials. Ann OccupHyg 55:1–5. https://doi.org/10.1093/annhyg/meq092Liu KN (2002) An introduction to atmospheric radiation. Academic Press, CambridgeLove JJ, Bedrosian PA (2019) Extreme-event geoelectric hazard maps. In: Buzulukova N (ed) Extreme events in geospace-origins, predictability, and consequences. Elsevier, Amsterdam, pp 209–230Lui ATY (1992) Magnetospheric substorms. Physics Fluids B: Plasma Physics 4:2257–2263. https://doi.org/10.1063/1.860194Maccarrone M, Fantini C, Finazzi Agrò A, Rosato N (1998) Kinetics of ultraweak light emission from human erythroleukemia K562 cells upon electroporation. Biochim et BiophysActa (BBA) - Biomembr 1414:43–50. https://doi.org/10.1016/S0005-2736(98)00150-3MacGorman D, Rust WD (1998) The electrical nature of storms. Oxford University Press, New YorkMach DM, Blakeslee RJ, Bateman MG (2011) Global electric circuit implications of combined aircraft storm electric current measurements and satellite-based diurnal lightning statistics. J Geophys Res 116:D05201. https://doi.org/10.1029/2010JD014462Magono C (1980) Thunderstorms. Elsevier, AmsterdamMarkson R (2007) The global circuit intensity: its measurement and variation over the last 50 years. Bull Am Meteorol Soc 88(2):223–242. https://doi.org/10.1175/BAMS-88-2-223Marracino P et al (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9.1(2019):10477Mathews JD (1998) Sporadic E: current views and recent progress. J Atmos Sol-Terr Phys 60:413McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiol, Biochem and Pharma, 6th edn. Pergamon Press, OxfordMcPherron RL (1995) Magnetospheric dynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 400–457Mirabel PJ, Jaecker-Voirol A (1988) Binary homogeneous nucleation. In: Wagner PE, Vali G (eds) Atmospheric aerosols and nucleation. Lecture Notes in Physics, 309th edn. Springer, BerlinMirme A, Tamm E, Mordas G, Vana M, Uin J, Mirme S, Bernotas T, Laakso L, Hirsikko A, Kulmala M (2007) A wide-range multi-channel air ion spectrometer. Boreal Environ Res 12:247–264Miroshnichenko L (2015) Solar cosmic rays: fundamentals and applications. Springer, BerlinMitsutake G, Otsuka K, Hayakawa M, Sekiguchi M, Corndlissen G, Halberg F (2005) Does Schumann resonance affect our blood pressure? Biomed Pharmacother 59:S10–S14Munn RE (1987) Bioclimatology. In: Climatology. Encyclopedia of Earth Science. Springer, Boston. https://doi.org/10.1007/0-387-30749-4_26NASA (2020) https://www.nasa.gov/mission_pages/rbsp/science/rbsp-spaceweather.html Accessed in February 2020Neubert T, Rycroft M, Farges T, Blanc E, Chanrion O, Arnone E, Odzimek A, Arnold N, Enell C-F, Turunen E, Bosinger T, Mika A, Haldoupis C, Steiner RJ, Van der Velde O, Soula S, Berg P, Boberg F, Thejll P, Christiansen B, Ignaccolo M, Fullekrug M, Verronen PT, Montanya J, Crosby N (2008) Recent results from studies of electric discharges in the mesosphere. Surv Geophys 29:71–137. https://doi.org/10.1007/s10712-008-9043-1Nickolaenko AP, Hayakawa M, Hobara Y, (2010) Q-Bursts: natural ELF radio transients, Surv Geophys, Volume 31 4:409-425. https://doi.org/10.1007/s10712010-9096-9Nickolaenko AP, Hayakawa M (2002) Resonances in the Earth–ionosphere cavity. Kluwer Academic Publishers, DordrechtOdzimek A, Baranski P, Kubicki M, Jasinkiewicz D (2018) Electrical signatures of nimbostratus and stratus clouds in ground-level vertical atmospheric electric field and current density at mid-latitude station Swider, Poland. Atmos Res 109C:188–203. https://doi.org/10.1016/j.atmosres.2018.03.018Ogawa T, Tanaka Y, Yasuhara M, Fraser-Smith AC, Gendrin R (1967) Worldwide simultaneity of occurrence of a Q-type burst in the Schumann resonance frequency range. J Geomagn Geoelectr 19:377–384Ouzounov D, Pulinets S, Hattori K, Taylor P (2018) Pre-earthquake processes: a multidisciplinary approach to earthquake prediction studies. American Geophysical Union, WashingtonPalmer SJ, Rycroft MJ, Cermak M (2006) Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys 27:557–595Parkinson WL, Torreson OW (1931) The diurnal variation of the electric potential of the atmosphere over the oceans. Union GĂ©odĂ©sique et GĂ©ophysique Internationale Bulletin 8:340–345Pasko VP, Yair Y, Kuo C-L (2012) Lightning related transient luminous events at high altitude in the Earth’s atmosphere: phenomenology, mechanisms, and effects, Space Sci. Rev. 168:475–516. https://doi.org/10.1007/s11214-011-9813-9Pöschl U (2005) Atmospheric aerosols: composition, transformation, climate and health effects. Angewandte Chemie International Edition 44, no. 46 (2005): 7520–40.Price C (2016) ELF Electromagnetic waves from lightning: the Schumann resonances. Atmosphere 7(9):116. https://doi.org/10.3390/atmos7090116Price C, Williams E, Elhalel G, & Sentman D (2020). Natural ELF fields in the atmosphere and in living organisms. In J Biometeorol 1-8.Priest ER (1995) Sun and its magnetohydrodynamics. In: Kivelson MG, Russell CT (eds) Introduction to space physics. Cambridge University Press, Cambridge, pp 58–90Probstein RF, Hicks R (1993) Removal of contaminants from soils by electric fields. Science 260(5107):498–503Purcell and Morin (2013) Harvard University. Electricity and Magnetism, 820 pages (3rd). Cambridge University Press, New York. ISBN 978-1-107-01402-2.Rakov VA, Uman MA (2002) Lightning: physics and effects. Press, Cambridge UniversityReiter R (1985) Fields, currents and aerosols in the lower atmosphere, Steinkopff Verlag, NSF Translation TT 76-52030Repacholi, Michael HB, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160Revil A, Naudet V, Nouzaret J, Pessel M (2003) Principles of electrography applied to self-potential electrokinetic sources and hydrogeological applications. Water Resour Res 39(5)Rich PR (2003) The molecular machinery of Keilin’s respiratory chain. Biochem Soc Trans 31(Pt 6):1095–1105. https://doi.org/10.1042/BST0311095Rishbeth H, Garriot OK (1969), Introduction to ionospheric physics, Academic Press.Rodger CJ (1999) Red sprites, upward lightning, and VLF perturbations. Rev Geophys 37(3):317–336. https://doi.org/10.1029/1999RG900006Rogers RR (1979) A short course in cloud physics. Press, PergamonRoss E, Chaplin WJ (2019) The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Sol Phys 294:8Ruggeri F, Zosel F, Mutter N, Różycka M, Wojtas M, OĹĽyhar A, Schuler B, Krishnan M (2017) Single-molecule electrometry. Nat Nanotechnol 12(5):488–495Runge J, Balasis G, Daglis IA, Papad

    Bayesian Algorithm Implementation in a Real Time Exposure Assessment Model on Benzene with Calculation of Associated Cancer Risks

    Get PDF
    The objective of the current study was the development of a reliable modeling platform to calculate in real time the personal exposure and the associated health risk for filling station employees evaluating current environmental parameters (traffic, meteorological and amount of fuel traded) determined by the appropriate sensor network. A set of Artificial Neural Networks (ANNs) was developed to predict benzene exposure pattern for the filling station employees. Furthermore, a Physiology Based Pharmaco-Kinetic (PBPK) risk assessment model was developed in order to calculate the lifetime probability distribution of leukemia to the employees, fed by data obtained by the ANN model. Bayesian algorithm was involved in crucial points of both model sub compartments. The application was evaluated in two filling stations (one urban and one rural). Among several algorithms available for the development of the ANN exposure model, Bayesian regularization provided the best results and seemed to be a promising technique for prediction of the exposure pattern of that occupational population group. On assessing the estimated leukemia risk under the scope of providing a distribution curve based on the exposure levels and the different susceptibility of the population, the Bayesian algorithm was a prerequisite of the Monte Carlo approach, which is integrated in the PBPK-based risk model. In conclusion, the modeling system described herein is capable of exploiting the information collected by the environmental sensors in order to estimate in real time the personal exposure and the resulting health risk for employees of gasoline filling stations

    Assessment and prevention of acute health effects of weather conditions in Europe, the PHEWE project: background, objectives, design

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The project "Assessment and prevention of acute health effects of weather conditions in Europe" (PHEWE) had the aim of assessing the association between weather conditions and acute health effects, during both warm and cold seasons in 16 European cities with widely differing climatic conditions and to provide information for public health policies.</p> <p>Methods</p> <p>The PHEWE project was a three-year pan-European collaboration between epidemiologists, meteorologists and experts in public health. Meteorological, air pollution and mortality data from 16 cities and hospital admission data from 12 cities were available from 1990 to 2000. The short-term effect on mortality/morbidity was evaluated through city-specific and pooled time series analysis. The interaction between weather and air pollutants was evaluated and health impact assessments were performed to quantify the effect on the different populations. A heat/health watch warning system to predict oppressive weather conditions and alert the population was developed in a subgroup of cities and information on existing prevention policies and of adaptive strategies was gathered.</p> <p>Results</p> <p>Main results were presented in a symposium at the conference of the International Society of Environmental Epidemiology in Paris on September 6<sup>th </sup>2006 and will be published as scientific articles. The present article introduces the project and includes a description of the database and the framework of the applied methodology.</p> <p>Conclusion</p> <p>The PHEWE project offers the opportunity to investigate the relationship between temperature and mortality in 16 European cities, representing a wide range of climatic, socio-demographic and cultural characteristics; the use of a standardized methodology allows for direct comparison between cities.</p

    Sources and factors affecting PM10 levels in two European cities: Implications for local air quality management

    No full text
    Despite improvements in vehicle and fuel technology that have led to reductions in primary particle emissions, high PM10 levels have been observed in recent years in several European cities, including Athens (Greece) and Birmingham (UK). In certain cases, high PM10 concentrations have persisted over periods of several hours, resulting in exceedences of EU target values. In order to design effective PM10 control strategies, it is essential to develop an understanding of local and remote sources of particulate matter, as well as of the factors influencing its temporal and spatial variability in urban areas. In this study, PM10 data from Athens and Birmingham were analysed for relationships to other pollutants (NOx, CO, O-3 and SO2) and meteorological parameters (wind velocity, temperature, relative humidity, precipitation, solar radiation and atmospheric pressure) during a 3-year period (2001-2003). Significant positive correlations between PM10 and NOx, CO, and solar radiation were observed at the selected monitoring sites during cold seasons. On the other hand, negative correlations between PM10 and O-3, wind speed and precipitation were observed during the same seasons. However, these correlations became weaker during warm seasons, probably due to secondary aerosol formation and enhanced soil dust re-suspension. Furthermore, principal component and regression analyses were used to quantify the contribution of non-combustion sources to the observed PM10 background levels. This contribution ranged between 45% and 70% in Birmingham and 41-74% in Athens. Finally, several winter and summer PM10 episodes from each city were analysed using a back trajectory model, in order to identify the origin of the polluted air masses. It was found that long-range transport of particles from continental Europe had a marked effect on PM10 background levels in Birmingham, while the local weather had a stronger influence on PM10 levels in Athens. (C) 2007 Elsevier Ltd. All rights reserved

    Burden of Natural-Cause and Cause-Specific Mortality Associated with Long-Term Exposure to PM2.5: A Case Study in Attica Region, Greece

    No full text
    In this study, the AirQ+ software proposed by the World Health Organization (WHO) was applied in order to assess the health endpoints associated with the long-term exposure to PM2.5 in Attica Region, Greece. For this purpose, we analyzed the daily average concentrations of PM2.5 registered by the air quality monitoring stations in the region, from 1 January 2007 to 31 December 2018. Although there was a decreasing trend in PM2.5 concentrations levels, the levels of PM2.5 exceeded the AQG (Air Quality Guidelines) limit value (annual value: 5 &mu;g/m3) established by the WHO. The findings revealed that the burden of mortality (from all-natural causes) at people above 30 years old associated with PM2.5 exposure was 4752 [3179&ndash;6152] deaths in 2007 and 2424 [1598&ndash;3179] deaths in 2018. In general, the attributable mortality from specific causes of deaths (e.g., lung cancer, IHD (ischemic heart diseases) and stroke) in people above 25 years old decreased between the years, but the mortality from COPD (chronic obstructive pulmonary diseases) was stable at 146 [79&ndash;220] deaths in 2007 and 147 [63&ndash;244] deaths in 2018. We also found differences in mortality cases from IHD and stroke among the age groups and between the years 2007 and 2018

    Burden of Natural-Cause and Cause-Specific Mortality Associated with Long-Term Exposure to PM<sub>2.5</sub>: A Case Study in Attica Region, Greece

    No full text
    In this study, the AirQ+ software proposed by the World Health Organization (WHO) was applied in order to assess the health endpoints associated with the long-term exposure to PM2.5 in Attica Region, Greece. For this purpose, we analyzed the daily average concentrations of PM2.5 registered by the air quality monitoring stations in the region, from 1 January 2007 to 31 December 2018. Although there was a decreasing trend in PM2.5 concentrations levels, the levels of PM2.5 exceeded the AQG (Air Quality Guidelines) limit value (annual value: 5 μg/m3) established by the WHO. The findings revealed that the burden of mortality (from all-natural causes) at people above 30 years old associated with PM2.5 exposure was 4752 [3179–6152] deaths in 2007 and 2424 [1598–3179] deaths in 2018. In general, the attributable mortality from specific causes of deaths (e.g., lung cancer, IHD (ischemic heart diseases) and stroke) in people above 25 years old decreased between the years, but the mortality from COPD (chronic obstructive pulmonary diseases) was stable at 146 [79–220] deaths in 2007 and 147 [63–244] deaths in 2018. We also found differences in mortality cases from IHD and stroke among the age groups and between the years 2007 and 2018

    Science and Policy Challenges of Atmospheric Modelling in Consideration of Health Effects

    No full text
    Next generations of atmospheric models are required to provide a realistic assessment of different types of chronic and acute environmental conditions and forecast the consequences on population health. These tasks were carried out usually with epidemiological studies, which are not adequate to indicate health effects, or even worse, they might lead into the introduction of wrong solutions. In order to achieve this, models should be capable to carry out hazard identification, dose-response evaluations, population exposure assessment and risk characterization, especially for the realistic evaluation of adverse effects if a toxic substance is absorbed by a particular organism or population in urban areas where the population density is significantly high. The present work examines in detail if sufficient limit values are set in exposure media; if exposure assessment is now possible by using compliance data; if health impact assessment possible, and finally, if tracing exposure back to sources is achievable.JRC.H-Institute for Environment and Sustainability (Ispra
    corecore