407 research outputs found

    Impact of Nitrogen Fertilization and Cropping System on Carbon Sequestration in Midwestern Mollisols

    Get PDF
    Growing interest in the potential for agricultural soils to provide a sink for atmospheric C has prompted studies of effects of management on soil organic carbon (SOC) sequestration. We analyzed the impact on SOC of four N fertilization rates (0–270 kg N ha−1) and four cropping systems: continuous corn (CC) (Zea mays L.); corn–soybean [Glycine max (L.) Merr.] (CS); corn–corn–oat–alfalfa (oat, Avena sativa L.; alfalfa, Medicago sativa L.) (CCOA), and corn–oat–alfalfa–alfalfa (COAA). Soils were sampled in 2002, Years 23 and 48 of the experiments located in northeast and north-central Iowa, respectively. The experiments were conducted using a replicated split-plot design under conventional tillage. A native prairie was sampled to provide a reference (for one site only). Cropping systems that contained alfalfa had the highest SOC stocks, whereas the CS system generally had the lowest SOC stocks. Concentrations of SOC increased significantly between 1990 and 2002 in only two of the nine systems for which historical data were available, the fertilized CC and COAA systems at one site. Soil quality indices such as particulate organic carbon (POC) were influenced by cropping system, with CS \u3c CC \u3c CCOA. In the native prairie, SOC, POC, and resistant C concentrations were 2.8, 2.6, and 3.9 times, respectively, the highest values in cropped soil, indicating that cultivated soils had not recovered to precultivation conditions. Although corn yields increased with N additions, N fertilization increased SOC stocks only in the CC system at one site. Considering the C cost for N fertilizer production, N fertilization generally had a net negative effect on C sequestration

    The economics of soil C sequestration

    Get PDF
    Abstract. Carbon is a critical component of soil vitality and of our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence this is a case of significant market failure. In the design of alternative policy options we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures. </jats:p

    Comparative genomic analysis of Mycobacterium avium subspecies obtained from multiple host species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium avium </it>(<it>M. avium</it>) subspecies vary widely in both pathogenicity and host specificity, but the genetic features contributing to this diversity remain unclear.</p> <p>Results</p> <p>A comparative genomic approach was used to identify large sequence polymorphisms among <it>M. avium </it>subspecies obtained from a variety of host animals. DNA microarrays were used as a platform for comparing mycobacterial isolates with the sequenced bovine isolate <it>M. avium </it>subsp. <it>paratuberculosis </it>(MAP) K-10. Open reading frames (ORFs) were classified as present or divergent based on the relative fluorescent intensities of the experimental samples compared to MAP K-10 DNA. Multiple large polymorphic regions were found in the genomes of MAP isolates obtained from sheep. One of these clusters encodes glycopeptidolipid biosynthesis enzymes which have not previously been identified in MAP. <it>M. avium </it>subsp. <it>silvaticum </it>isolates were observed to have a hybridization profile very similar to yet distinguishable from <it>M. avium </it>subsp. <it>avium</it>. Isolates obtained from cattle (n = 5), birds (n = 4), goats (n = 3), bison (n = 3), and humans (n = 9) were indistinguishable from cattle isolate MAP K-10.</p> <p>Conclusion</p> <p>Genome diversity in <it>M. avium </it>subspecies appears to be mediated by large sequence polymorphisms that are commonly associated with mobile genetic elements. Subspecies and host adapted isolates of <it>M. avium </it>were distinguishable by the presence or absence of specific polymorphisms.</p

    Early antibody response against Mycobacterium avium subspecies paratuberculosis antigens in subclinical cattle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Our laboratories have previously reported on the experimental infection of cattle with <it>Mycobacterium avium </it>subsp <it>paratuberculosis </it>(<it>M. paratuberculosis</it>) using an intratonsillar infection model. In addition, we have recently developed a partial protein array representing 92 <it>M. paratuberculosis </it>coding sequences. These combined tools have enabled a unique look at the temporal analysis of <it>M. paratuberculosis </it>antigens within the native host. The primary objective of this study was to identify <it>M. paratuberculosis </it>antigens detected by cattle early during infection. A secondary objective was to evaluate the humoral immune response in cattle during the initial year of infection.</p> <p>Results</p> <p>Sera from two experimentally infected cattle, taken pre-inoculation and at day 70, 194 and 321 post infection, identified dynamic antibody reactivity among antigens with some showing an increased response over time and others showing declining levels of reactivity over the same time period. A <it>M. paratuberculosis </it>specific protein, encoded by MAP0862, was strongly detected initially, but the antibody response became weaker with time. The most reactive protein was a putative surface antigen encoded by MAP1087. A second protein, MAP1204, implicated in virulence, was also strongly detected by day 70 in both cattle. Subsequent experiments showed that these two proteins were detected with sera from 5 of 9 naturally infected cattle in the subclinical stage of Johne's disease.</p> <p>Conclusion</p> <p>Collectively these results demonstrate that <it>M. paratuberculosis </it>proteins are detected by sera from experimentally infected cattle as early as 70 days after exposure. These data further suggest at least two antigens may be useful in the early diagnosis of <it>M. paratuberculosis </it>infections. Finally, the construction and use of a protein array in this pilot study has led to a novel approach for discovery of <it>M. paratuberculosis </it>antigens.</p

    Modelling Grass Productivity in the Brazilian Amazon

    Get PDF
    The Amazon Basin covers an area of 7 million km2, and the central part is almost entirely located within Brazilian territory. This region has the highest rates of deforestation in the world, and the total area deforested now exceeds 600,000 km2. Cattle pasture represents the largest single use (about 70%) of this once-forested land in most of the Brazilian Basin, with an estimated area of 20 million hectares. Our main objective was to simulate grass productivity in different forest to pasture chronosequences within the Brazilian Amazon

    Working while pregnant: how women cope with unsupportive organisations

    Get PDF

    Agricultural climate change mitigation : Carbon calculators as a guide for decision making

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in International Journal of Agricultural Sustainability on 9 November 2017, available online: https://doi.org/10.1080/14735903.2017.1398628. Under embargo. Embargo end date: 9 November 2018.The dairy industry is receiving considerable attention in relation to both its significant greenhouse gas (GHG) emissions, and it’s potential for reducing those emissions, contributing towards meeting national targets and driving the industry towards sustainable intensification. However, the extent to which improvements can be made is dependent on the decision making processes of individual producers, so there has been a proliferation of carbon accounting tools seeking to influence those processes. This paper evaluates the suitability of such tools for driving environmental change by influencing on-farm management decisions. Seven tools suitable for the European dairy industry were identified, their characteristics evaluated, and used to process data relating to six scenario farms, emulating process undertaken in real farm management situations. As a result of the range of approaches taken by the tools, there was limited agreement between them as to GHG emissions magnitude, and no consistent pattern as to which tools resulted in the highest/lowest results. Despite this it is argued, that as there was agreement as to the farm activities responsible for the greatest emissions, the more complex tools were still capable of performing a ‘decision support’ role, and guiding management decisions, whilst others could merely focus attention on key issues.Peer reviewe

    Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

    Get PDF
    Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating global climate change while increasing nutrient availability to plants. EW uses land that is already producing food and fuel to sequester carbon (C), and reduces N2O loss through pH buffering. As biofuel use increases, EW in bioenergy crops offers the opportunity to sequester CO2 while reducing fossil fuel combustion. Uncertainties remain in the long-term effects and global implications of large-scale efforts to directly manipulate Earth's atmospheric CO2 composition, but EW in agricultural lands is an opportunity to employ these soils to sequester atmospheric C while benefitting crop production and the global climate
    corecore