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Agricultural climate change mitigation: carbon calculators as a guide 

for decision making 

The dairy industry is receiving considerable attention in relation to both its 

significant greenhouse gas (GHG) emissions, and it’s potential for reducing those 

emissions, contributing towards meeting national targets and driving the industry 

towards sustainable intensification. However, the extent to which improvements 

can be made is dependent on the decision making processes of individual 

producers, so there has been a proliferation of carbon accounting tools seeking to 

influence those processes. This paper evaluates the suitability of such tools for 

driving environmental change by influencing on-farm management decisions. 

Seven tools suitable for the European dairy industry were identified, their 

characteristics evaluated, and used to process data relating to six scenario farms, 

emulating process undertaken in real farm management situations. As a result of 

the range of approaches taken by the tools, there was limited agreement between 

them as to GHG emissions magnitude, and no consistent pattern as to which tools 

resulted in the highest/lowest results. Despite this it is argued, that as there was 

agreement as to the farm activities responsible for the greatest emissions, the 

more complex tools were still capable of performing a ‘decision support’ role, 

and guiding management decisions, whilst others could merely focus attention on 

key issues. 

Keywords: carbon calculators; climate change mitigation; livestock agriculture; 

greenhouse gas emissions; decision support 

 

Introduction 

The potential consequences of anthropogenically driven climate change are both severe 

and varied, encompassing threats to the environment, food production, the economy and 

human health (Araújo, Alagador, Cabeza, Nogués-Bravo, & Thuiller, 2011; Kim & 

Neff, 2009). Inevitably therefore, it has been at the forefront of both national and 

international environmental policies ever since 1997, when the Kyoto Protocol 

established a greenhouse gas (GHG) emissions reduction target of 5.2% below 1990 



 

 

levels (for 37 developed nations - Lewis, Green, Warner, & Tzilivakis, 2013). The 

European Union (EU) for example, has set ambitious targets for its member states, with 

the 2020 Climate and Energy Package aiming to reduce emissions by 20% by 2020 

(European Commission, 2007; European Commission, 2008), the 2030 Climate and 

Energy Framework going for 40% by 2030 (European Commission, 2014), and the 

2050 Low-Carbon Economy Roadmap (European Commission, 2011; Franks & 

Hadingham, 2012) targeting 60% by 2040 and 80% by 2050 (all compared to 1990 

levels). Progress towards the early targets has been good (European Environment 

Agency, 2015), but it is clear that all sectors will have to play their part if this is to 

continue; therefore, as well as addressing major emitters of carbon dioxide (CO2 - such 

as the energy industry), policies such as the UK’s Carbon Plan (HM Government, 2011) 

now recognise the role to be played by businesses more broadly, including those in the 

agricultural sector. 

Although some agricultural activities (especially those associated with grassland 

agriculture) can support significant carbon storage, others can be major contributors to 

GHG emissions. The IPCC (Intergovernmental Panel on Climate Change - Smith et al., 

2014) for example, estimates that agriculture as a whole accounts for between 10% and 

12% of all anthropogenic GHG emissions around the world, with similar estimates of 

9% having been produced for the European Union (European Commission, 2012) and 

UK (AEA, 2011). As far as the dairy industry is concerned, estimates of the scale of the 

problem vary, but the FAO (who adopted a life cycle assessment approach 

encompassing a wider range of emissions than the above studies - O’Mara, 2011), 

suggested that the sector could be responsible for 3% to 4% of emissions (FAO, 2010; 

Gerber et al., 2013). Unlike in many other business sectors however, CO2 is not the 

major cause of concern, albeit that some is emitted as a result of the energy used in farm 



 

 

machinery, milking parlours, animal housing and refrigeration, for example (Crosson et 

al., 2011; Hillier et al., 2011; O’Mara, 2011). Instead, the main issues relate to methane 

(CH4) emitted due to enteric fermentation and the breakdown of stored manures, and 

nitrous oxide (N2O) produced as a result of the application to land, and subsequent 

breakdown, of nitrogen-based fertilisers and manures (Crosson et al., 2011; Hillier et 

al., 2011; O’Mara, 2011; Paustian et al., 2004), both gases having significantly higher 

global warming potentials (GWPs) than CO2 itself (25 CO2e and 298 CO2e 

respectively). 

Dairy agriculture therefore, plays an important role in driving climate change, 

and as a result its impact is now a focus of concern for a number of countries (Franks & 

Hadingham, 2012; Hagemann, Hemme, Ndambi, Alqaisi, & Sultana, 2011; Hillier et al., 

2011; Smith et al., 2014). There can be little doubt that there will be no let up on the 

pressures being placed on the industry to improve performance as a result of the 

ambitious GHG reduction targets being set by domestic and international legislation 

(see above), since meeting these targets is going to become increasingly difficult. Not 

least because some of the other most polluting sectors have already achieved substantial 

decreases in emissions in recent years. In the UK for example, there has been an 

estimated 38% decrease in total GHG emissions since 1990, with some of the biggest 

contributors being amongst those sectors responsible for most of the countries emissions 

(e.g. the energy supply sector has seen a 41% reduction since 1990 - DECC, 2016). 

Agriculture has seen a 16% reduction, but much of this was down to a reduction in 

livestock numbers and synthetic fertiliser use in the late 1990s, with little improvement 

since (DECC, 2016). 

Fortunately however, options for climate change mitigation within the dairy 

sector, particularly in developed nations such as those of Europe and North America, 



 

 

are reasonably good (Hillier et al., 2011). Indeed many mitigation options make use of 

technologies and/or techniques which are already available, and so could be 

implemented quite quickly (Crosson et al., 2011). It is known, for example, that 

amendments to animal diets can affect enteric CH4 production, the extent to which 

livestock are grazed and/or housed impacts N2O emissions, and that changes to the way 

in which manures and/or slurries are managed can affect emissions of both gases 

(O’Mara, 2011). Consequently, the FAO estimates that within the livestock sector as a 

whole, a 30% reduction in GHG emissions could be possible in any given system, 

region and climate, if producers adopted the technologies and practices currently 

embraced by the best performing 10% (Gerber et al., 2013). Although the estimated 

benefits of such amendments do vary considerably (Smith et al., 2014). 

This however, needs to be achieved against a backdrop of increasing pressures 

for agriculture (including livestock agriculture) to produce more food in light of food 

security concerns (Firbank, 2009). Global population, which is already around 7.5 

billion, is forecast to continue growing, and be in excess of 8.5 billion by 2030, 9.7 

billion by 2050 and 11 billion by 2100 (UN DESA, 2017; Crosson et al., 2011; O’Mara 

2011; McAllister, Beauchemin, McGinn, Hao & Robinson, 2011; Campbell, Thornton, 

Zougmoré, van Asten & Lipper, 2014), which will inevitably drive a significant 

increase in demand for food (Tilman, Balzer, Hill & Befort, 2011). In addition however, 

it is to be hoped that the levels of extreme poverty which today blight the lives of 

millions of people worldwide, continue to fall as they have in recent decades 

(particularly in Asia - World Bank, 2016; Campbell et al., 2014), such that demand will 

rise still further. Consequently, the Food and Agriculture Organization predicts that 

global food supply will need to increase by nearly 40% by 2030 and 60% by 2050, and 

even more than this in the developing world (from 2005/2007 figures - Alexandratos & 



 

 

Bruinsma, 2012). Consumption of livestock products (principally meat, but also dairy) 

however, tends to be related to living standards (Foresight, 2011; Campbell et al., 

2014), so as these improve such consumption is expected to rise at a rate in excess of 

that for food as a whole, so that by 2050, demand for livestock derived products of all 

types could be at twice their current level (McAllister et al., 2011), with potentially 

serious implications for the future of GHG emissions from the industry (Garnett, 2009). 

In the second half of the 20th century, agricultural production around the world 

increased sufficiently to keep pace with the increased population, although clearly there 

were significant issues to address when it came to the equitable distribution of supplies 

(Pretty, Toulmin & Williams, 2011; Firbank, Elliott, Drake, Cao & Gooday, 2013). 

However, the capability of the industry to meet this demand is threatened by a lack of 

potentially productive land that isn’t already being utilised (Firbank, 2009), and even 

where there is availability, the environmental costs of bringing it into production could 

be considerable (Tilman et al., 2011; Petersen & Snapp, 2015). In addition, in many 

areas the productivity of existing farmland is likely to fall due to the combined effects 

of soil degradation, urbanisation, climate change, sea level rise and increased 

competition for resources, whilst still more may be required for the production of 

energy crops (Firbank, 2009; Campbell et al., 2014). These and other environmental 

threats, present a serious challenge for the future development of the global agricultural 

sector, but it is clear that a means needs to be found to increase productivity whilst 

protecting the environment, and (in as far as climate change is concerned) playing a role 

in mitigating the problem, as well as ensuring the long-term resilience of the sector 

(Firbank, 2009; Pretty et al., 2011). This has led to the concept of sustainable 

intensification (SI), which was first coined in the 1990s (e.g. Pretty, 1997), and in which 

food supply is increased, but without the need to bring additional land into production 



 

 

or incur the environmental costs that have often been associated with agricultural 

intensification in the past (Firbank, 2009; Foresight, 2011; Firbank et al., 2013; Petersen 

& Snapp, 2015). Indeed, some authors have used the term to indicate agriculture that 

both increases food production, and contributes to the delivery of a whole range of 

ecosystem services (i.e. something that goes beyond simply avoiding environmental 

damage - Foresight, 2011; Firbank et al., 2013; Campbell et al., 2014). The related term 

of climate-smart agriculture (CSA) has also been used by some authors with narrower 

climate change based objectives (e.g. the FAO - Franks, 2014), including both the 

mitigation of and adaptation to climate change (Campbell et al., 2014). Indeed it could 

be argued that SI is an essential element in CSA and vice versa, in that the use of 

resources more efficiently in production (SI) inevitably has a role to play in moving 

farming towards CSA, whilst at the same time, where CSA is practiced successfully, it 

will simultaneously result in SI (Campbell et al., 2014). 

It has been suggested that in under-yielding parts of world (such as many in the 

developing world), there is scope for improvements in both yield and environmental 

performance through the adoption of technological improvements (Tilman et al., 2011), 

indeed, there are clear examples from the developing world in which SI has been 

demonstrated in practice (Pretty et al., 2011). In the developed world too, it has often 

been put forward as a key priority for agricultural development (Foresight, 2011; 

Franks, 2014), but here it is often viewed as something that will be desirable in the 

future rather than something to be strived for in the present (Firbank et al., 2013). 

Indeed, there is considerable confusion as to precisely what SI involves when 

implemented on the ground, in part due to the lack of a uniformly applied definition of 

what actually defines sustainability and what would be required to get there (Petersen & 

Snapp, 2015). There is also little agreement as to whether it will entail a profound shift 



 

 

in production system, or whether it can be achieved through relatively minor 

amendments to current practices (Petersen & Snapp, 2015). As a consequence, SI is 

often seen as something which sounds good at the policy level, but which means 

considerably less to those who would be responsible for delivering it (Petersen & 

Snapp, 2015). Yet if the needs of global food security are to be met, it is likely that in 

addition to major improvements in food productivity needing to be made in parts of the 

developing world, the developed world too will have a significant role to play, and the 

pressure to maintain or increase productivity in an ever more challenging climatic 

situation, and without resulting in increased environmental damage, is already being felt 

(Firbank et al., 2013). 

Whether individual farm businesses make the changes to their practices 

necessary to influence climate change and move towards SI/CSA is, however, 

determined by the decision making processes of individual farmers, so in recent decades 

attempts to understand and influence those processes, have become central to agri-

environmental policy in the UK, Europe and more widely (Sutherland et al., 2012). 

Some studies indicate that it is the economic benefits of implementing environmental 

friendly practices which are key to their adoption (Sutherland, 2010), although this may 

be an oversimplification of thought processes which are influenced by a wide variety of 

external and internal factors, many of which do not relate to economics. Farmers are a 

heterogeneous group with a range of priorities (Ingram, Gaskell, Mills, & Short, 2013), 

so whilst economics will always be a powerful motivator for farmers incorporating agri-

environmental schemes into their business plans, it is not the only one. Studies of 

farmer motivations have found that by far the most important consideration is the desire 

to be able to pass the business on to subsequent generations (continuance), although the 

precise meaning of this varies from business to business (Ingram et al., 2013). Some do 



 

 

judge it purely in terms of economic factors (profitability), whilst others consider such 

things as the maintenance of traditional production methods (Ingram et al., 2013), and 

consequently, although there is often little evidence of influence in the form of social 

pressures to become involved in environmental improvement per se (Sutherland, 2010), 

environmental benefits may accrue from decisions made for other reasons. Conversely 

however, there is also a desire to be seen as a ‘good farmer’, often evidenced by high 

yields, tidy fields, good quality livestock, and so on (Sutherland & Darnhofer, 2012), 

which could in some cases work against the adoption of environmentally friendly 

practices. An additional complication results from the fact that most farm businesses do 

not operate within a framework in which it is possible to make fully rational decisions 

as to how a farm should develop through time (for example whether to implement GHG 

mitigation measures, and if so which ones). Instead, many are locked into a specific 

direction of travel, within which only gradual transition is possible, due to so called 

‘path dependency’, a process in which historical events (e.g. investment decisions) can 

restrict the ability to change direction (Sutherland et al., 2012). As a result, any change 

in practices is likely to occur incrementally, unless forced by a significant trigger event 

(e.g. legislation, economic pressures, etc.). 

Whether occurring as a result of gradual, incremental change, or a major trigger 

event however, if businesses are to take up the challenge of climate change mitigation 

(for example), then they need the tools and advice to enable them to integrate the 

necessary changes into their management protocols. In relation to many of their 

practices (particularly those related to production), farmers may be sufficiently 

confident in their own abilities as to mean that external advise and/or information may 

not be sought, and where it is, it may be only once a decision on ‘what to do’ has been 

made and specific financial or technical advice is required (Beedell & Rehman, 1999). 



 

 

Despite this however, knowledge transfer (or ‘agricultural extension’) between 

researchers and agricultural practitioners, has long been seen as essential in order to 

ensure that farmers have access to the up-to-date information they need (Reardon-Smith 

et al., 2014). Traditionally this was done through the provision of face-to-face advice, 

provided either by the state or privately; however, such systems are limited in their 

ability to engage with large numbers of producers in a cost effective way, particularly in 

large, relatively sparsely populated parts of the world (Reardon-Smith et al., 2014). 

Consequently, state funded systems have often been curtailed or even ended altogether, 

and the business expenses involved in commercial provision can be seen as a major 

barrier to uptake (Dodd, 2012; Lewis et al., 2013). Much more use is therefore made (as 

it is in in most other areas of life) of ICT (information and communications technology), 

with an explosion in both internet-based and stand-alone (and sometimes paper-based) 

decision support tools, designed to take complex modelling approaches and/or expert 

judgement (Reardon-Smith et al., 2014) into the homes and offices of farmers. Albeit 

that the adoption of such systems by the agricultural industry has, to date, been 

piecemeal, which is possibly a reflection of their perceived (or real) inability to reflect 

complex site and business-specific issues (Reardon-Smith et al., 2014). Variability of 

environmental impacts between farms which, on the face of it, are operating the same 

production system, has been shown to be large, and the impact (positive or negative) of 

introducing environmental measures can be highly site and/or enterprise specific, and 

depend on complex interactions between farm practices (Meul et al., 2014). 

Consequently, in relation to GHG emissions for example, generic assessments of their 

magnitude and/or cause, and therefore potential solutions, may be of limited business 

value (Lewis et al., 2013), with farmers instead needing advice which is tailored to their 

enterprise (Meul et al., 2014). 



 

 

In part, this has been addressed through the development of a range of carbon 

calculators for use in carbon accounting (or carbon footprinting). This in itself, is not a 

new concept (it has often been associated with life cycle assessment investigations), and 

involves estimating GHG emissions over a pre-defined time period, often a products life 

cycle or, more commonly in agriculture, a production season or calendar year. At their 

simplest, these carbon calculators can be used to raise awareness of the important issues 

and sources of GHGs within a farm business (Kim & Neff, 2009; Lewis et al., 2013; 

Whittaker, McManus, & Smith, 2013); however, they can also be used as a basis for 

reporting emissions (e.g. to a purchaser further down the supply chain), or more 

importantly (in the context of this paper) to evaluate mitigation options (Whittaker et 

al., 2013). This requires producers to go beyond merely identifying their emissions, to 

identify potential mitigation activities, and make informed choices between them 

(Franks & Hadingham, 2012). This paper examines a number of the tools aimed at (in 

whole or part) the European dairy sector, in order to determine the extent to which they 

provide the sort of information likely to be of value in this sort of practical business 

decision making. In so doing, it considers whether the examined tools are suitable for 

inclusion within farm management procedures, or whether the information provided is 

of too general a nature to provide a basis for land and business management decision 

making, albeit that such systems may still have a role to play in informing users of the 

key issues more generally. 

Material and methods 

The methodology employed for this study is comprised of two main elements. Firstly, 

the selection of carbon accounting tools for further in-depth analysis, and their 

characterisation with respect to various properties relating to their ability to provide 

information on which climate change mitigation strategies could be based. Secondly, a 



 

 

consideration of the outputs of the various tools in relation to a series of standardised 

production scenarios, so as to identify the extent to which they provide a sound, 

consistent basis on which to make management decisions. 

Carbon calculator identification & characterisation 

In recent years, the number of carbon accounting tools available has increased 

significantly, such that they are now available for use in a wide variety of sectors 

(agricultural, domestic, industrial, transport, etc.) and by different end-users with 

different agendas and needs (e.g. policy makers, scientists, environmental managers, 

practitioners, etc.). The same can be said of the number of tools available for the 

agricultural industry in particular, with reviews of those available to agriculture and 

forestry carried out by Little and Smith (2010), Colomb et al. (2012) and Denef, 

Paustian, Archibeque, Biggar and Pape (2012) identifying 10, 18 and 36 respectively (as 

well as other protocols, guidelines and models). Not all are appropriate for adoption in 

the dairy industry however, so in order to clearly identify those which at least purport to 

be suitable for use in the sector under study, a review of available systems was carried 

out, in which tools were sought (through published literature and on-line) which met a 

number of criteria, and which reflected the different approaches taken (see below). In 

particular, it was determined that they should: 

 Have data entry and computational capabilities appropriate to the dairy sector: It 

is essential that tools have data entry systems and emission factors that allow 

emissions from dairy agriculture, as well as those from general energy use, to be 

determined. 

 Be applicable to the region being considered: In order to allow a degree of inter-

scenario/inter-tool comparison, it was essential to ensure that production was of 



 

 

a similar type and/or faced similar geographical conditions. Consequently, the 

study was restricted to those tools suitable for use in European dairy agriculture. 

 Be based on easily accessible data: Agricultural businesses face considerable 

pressures on staff time; therefore, if maximum adoption of carbon calculator use 

as a technique is to be achieved, data entry requirements should be such that, in 

as far as possible, only data likely to be easily available on the majority of farms 

is required. 

 Be freely available: Equally financial pressures mean that costly tools and 

models are unlikely to achieve wide-scale market penetration within the dairy 

sector. Consequently, this study was restricted to those tools which are freely 

available, although it is recognised that in some cases more detailed, 

commercially available systems may be appropriate (e.g. when used by a farm 

advisor). 

Each of the tools selected for further evaluation was examined in depth in order 

to identify a series of key characteristics (Table 1 - key elements of which are discussed 

in this paper) which were used to determine ease of use, site and business specificity, 

and the extent to which climate change mitigation options are guided so as to assist in 

management decisions. 

(Table 1 near here) 

Production scenario evaluation 

A number of livestock farm production scenarios were developed from data collated on 

real farms as part of a pan-European research project carried out on behalf of the 

European Commission (Tzilivakis, Lewis, Green, & Warner, 2010). Those case-studies 

in which the principal enterprise was stated to be dairy production were identified and 



 

 

reviewed in detail, so as to develop standardised scenarios in which on-farm data was 

recorded in a consistent form. To do this, those elements of a farms activities which 

were directly related to the dairy part of the enterprise were isolated (i.e. anything which 

could be wholly assigned to arable production or other forms of livestock was 

removed), and all relevant data was extracted from that part of the scenario. Gaps in 

data which might impact on the ability of some tools to be fully tested were then 

identified, and filled using published literature related to land and animal management 

in the dairy sector (e.g. Defra, 2010; Natural England, 2012; Natural England, 2013; 

Thomas, 2007), and the characteristics of the dairy industry in different EU countries 

(e.g. European Commission & EU FADN, 2013). In addition, supporting data on the 

local climate and soils was identified from freely available databases. In the case of 

climate, these belonged either to the local meteorological service (UK: the Met Office - 

Met Office, n.d.; France: Meteo France - Meteo France, n.d.; Italy: Meteo Aeronautica - 

Meteo Aeronautica, n.d.), or the World Weather Online database (Poland - World 

Weather Online, n.d.). Soils data was obtained in the form of the ‘soil reference group 

code from the World Reference Base (WRB) for soil resources’ and the ‘dominant 

surface textural class’, both available from the European Soil Data Centre (ESDAC - 

Panagos, Van Liedekerke, Jones, & Montanarella, 2008). 

The approach of developing scenarios in this way (as opposed to using the case-

studies in their existing state) was adopted, in order to overcome the different 

approaches to data recording (reflecting local practices) taken in the original project, 

allow for gaps in data resulting from the specific requirements of that study, and permit 

greater comparability. Each of the tools identified for detailed study was then used to 

produce a GHG emission estimate and profile (broken down by broad source category) 

for each scenario, emulating processes that would be undertaken in real farm 



 

 

management situations. In each case GHG emissions were apportioned in a number of 

different ways, namely: 

 Total GHG emissions of the farm: Emissions not apportioned. 

 GHG emissions per productive farm hectare: Taken to be emissions divided by 

the area of grassland and arable (for feed) crops. 

 GHG emissions per livestock unit: Livestock units (LU) being based on 

livestock numbers, and calculated according to (Redman, 2016 - Table 2). 

 GHG emissions per unit of milk production: Emissions divided by milk yield in 

m3. 

(Table 2 near here) 

GHG emission profiles were plotted for each tool, scenario and method of 

emission apportionment, in order to facilitate a rapid visual comparison of results. In 

each case, scope 3 emissions were ignored in this part of the study, so as to allow 

comparisons between calculators to be made on an equal basis, since not all allowed 

scope 3 emissions to be calculated (see below). In addition, comparative plots of the 

ranges produced by the various assessed tools, for each of five broad categories of 

emission source (energy/fuel use, crop residues, livestock, nutrient application, others), 

were produced for each scenario, in order to aid in the identification of commonalities 

and differences between tools. 

Results 

Carbon calculator identification & characterisation 

A thorough review of the carbon accounting tools available for farmers identified seven 

which met (to at least a reasonable extent) the criteria established above. A number of 



 

 

others were considered for inclusion, but rejected on one of a number of grounds. Some 

were deemed not to be sufficiently applicable to mainstream European agriculture, 

including a number produced in the US (e.g. COMET-Farm - USDA, n.d.), Australia 

(e.g. the Farming Enterprise Greenhouse Gas Emissions Calculator - The N2O Network, 

n.d.; and the FarmGAS Calculator ST - Australian Farm Institute, n.d.) and New 

Zealand (e.g. the Carbon Farming Calculator - Carbon Farming Group, 2012). Others 

(the HGCA’s Carbon Footprinting Decision Support tool for example - Collison & 

Hillier, 2012) were found not to cover the dairy sector, were limited in extent (e.g. 

relating only to emissions associated with direct energy use - Centre for Alternative 

Land Use, 2007), or were excluded on the basis that a fee was required to gain access to 

the system (e.g. CPLANv2 - CPLAN, n.d.). Nevertheless, those that were taken forward 

to the next stage of the study included a range of formats and complexities, as detailed 

below and in Table 3. 

 CPLANv0 (CPLAN, n.d.): Developed by farmers in central Scotland for use by 

UK based farm/land managers and policy makers, principally as a management 

tool for assessing and monitoring GHG emissions/sequestration on farm and for 

informing policy. It is the simplest of the tools assessed in this part of the study, 

requiring only limited data input through a simple web-based interface. As a 

result however, there is also limited depth in, or breakdown of, the outputs to the 

system, with only broad categories of emissions being reported, and specific 

mitigation advice is not provided. One bug was identified within this tool, as 

where numbers of ‘other cattle < 1 year’ were entered the emissions calculated 

(for that element only) were in CO2eq, rather than the Ceq the results were stated 

to be in. Adjustment was made for this in this paper, although it is unclear 

whether users will generally be aware of the problem. 



 

 

 CALM (Country Land and Business Association, n.d.): Developed by the UK’s 

Country Land and Business Association (CLA), to allow UK farm/land 

managers to identify suitable options for cutting GHG emissions and increasing 

resource use efficiency. It’s a free online system, but requires site registration, 

allowing assessments to be saved and retrieved. It also requires a greater level of 

input data than CPLANv0, although its online nature means that needs are by 

necessity still relatively light. As a result however, CALM breaks down output 

data to a greater extent, although specific mitigation advice is not provided. 

 CCaLC (The University of Manchester, n.d.): An application (previously MS 

Excel based) developed by the University of Manchester for use in all forms of 

production (i.e. not just agriculture), but which encompasses primary 

production. In the main it is intended for use by UK supply chain managers 

wishing to optimise or monitor supply chains (although the functional unit can 

be defined by the user - e.g. a farm, a product type, etc.), and as such it may not 

be particularly user-friendly when it comes to on-farm users. There is a 

reasonable amount of breakdown in the results (although sequestration is not 

accounted for), and if required the same tool can be used to address other 

resource efficiency issues (i.e. water use efficiency). Applied manures and 

slurries are entered in kg, with no allowance being made for variations in 

nitrogen (N) content; but inorganic fertilisers are entered in terms of N applied. 

Specific mitigation advice is not provided. 

 COOL Farm Tool (Cool Farm Alliance, n.d.): An online tool (previously MS 

Excel based), the GHG element of which was developed for the Cool Farm 

Alliance by a team led by the University of Aberdeen, in order to allow options 

for cutting emissions and increasing efficiency to be identified by farmers and 



 

 

supply chain managers/companies around the world. Much of the required input 

data is likely to be readily available, but data requirements are again reasonably 

high, and the international audience of the tool means that some may not be 

immediately available in the form required. Allowance is made for the type and 

dry matter content of feed, and manure and slurry applications are entered by 

type (with default N contents), whilst inorganic fertiliser applications can be 

entered by product type and amount (again with default N contents) or nutrient 

amount. There is a limit to the number of farm enterprises which can be saved in 

the free version (although subscription services are available), and a whole-farm 

assessment may require the summing of the results from a number of enterprise 

assessments. There is a reasonable level of breakdown in the results (by gas and 

source), although specific mitigation advice is not provided. 

 IMPACCT (University of Hertfordshire, 2010): A MS Visual Basic based 

application developed by the University of Hertfordshire to aid European 

farmers/land managers in assessing GHG emissions and sequestration, and to 

provide advice on appropriate mitigation strategies. This system too has 

relatively high data requirements (although much is likely to be readily 

available), but emissions and sequestration data (which can be saved and 

retrieved) can be broken down by gas and source, plotted, and recommendations 

obtained for practical on-farm measures for reducing emissions and/or 

increasing sequestration. Organic manure and slurry applications are entered by 

type (default N content used) and inorganic fertilisers as N, whilst livestock diets 

are selected from a limited number within the tool’s database (the tool having 

been developed as, to some extent, a proof of concept). In a contrast to the other 



 

 

tools assessed, energy use is estimated from entered fuel types and farm 

operations, rather than directly from entered fuel use. 

 Farm Carbon Calculator (Climate Friendly Food, 2012): A web based system 

(which allows the saving of a limited number of assessments online) developed 

by a non-profit organisation, to promote low carbon practice amongst UK 

farmers and growers, and forming part of the wider Farm Carbon Cutting 

Toolkit (Climate Friendly Food, n.d.). Although heavily influenced by the needs 

of organic producers, it is nevertheless equally applicable to the wider industry. 

Data requirements are moderate, but there is no breakdown of the results by gas. 

Inorganic fertilisers are entered in tonnes of product and manures/slurries are 

accounted for through an assessment of production as opposed to that applied. 

This tool also allows the assessment of a wide range of other farm activities 

(including fencing, pipe laying, etc.) and those associated with capital items and 

distribution, although to maintain comparability this facility was not used in this 

study. 

 European Carbon Calculator (Bochu, Metayer, Bordet, & Gimaret, 2013): An 

MS Excel based system developed by Solagro in France for the European 

Commission's Joint Research Center (JRC), with the aim of publicising GHG 

emissions from farming practices at a farm scale, and proposing mitigation 

actions (Bochu et al., 2013). Data requirements are high (including those 

associated with climate and soils - some of which may not be easily accessible). 

The flipside of the heavy data requirements is that the resulting emissions and 

sequestration data can be broken by gas and source and plotted, and it is possible 

to obtain recommendations for mitigation. In terms of suggesting mitigation 

options, the spreadsheet quantifies the potential tCO2e saving per ha per year 



 

 

(and percentage saving) and where appropriate makes an estimate of the possible 

financial savings, associated with a number of options (e.g. no-tillage, 

optimisation of grazing, etc.). 

(Table 3 near here) 

Production scenario evaluation 

Six case-study farms were identified as being predominantly dairy-based and were 

therefore selected as the basis on which to develop a series of standardised scenarios. 

Data on the dairy production and other (climate, soils, cropping, nutrient management, 

etc.) characteristics was then collated for each scenario in as consistent a form as 

possible (Tables 4 to 6). 

(Tables 4 to 6 near here) 

When the GHG emission profiles (broken down by broad emission source 

category) for the six scenario farms using four different apportionment techniques 

(Figure 1), and the comparative ranges produced by the various assessed tools for each 

source category (Figure 2) were plotted, the following key issues were highlighted. 

Firstly, it is evident from these results, that there is clearly (and perhaps unsurprisingly) 

a significant difference in the estimates of total GHG emissions (Figure 1a) for the 

different farm scenarios. Although it is noticeable that this is greatly reduced when the 

estimated GHG emissions are related to some practical functional unit, whether that be 

an area-based unit (e.g. productive area of the farm - Figure 1b), an animal-based unit 

(e.g. number of livestock units - Figure 1c) or a production-based unit (e.g. milk 

production - Figure 1d). However, as discussed below, the relevance of this in terms of 

on-farm management decisions, may be limited 

Secondly, it is clear that in terms of the estimates of total emissions (and 

therefore those associated with the various functional units) for individual farm 



 

 

scenarios (intra-scenario comparisons), there is considerable variation in the figures 

produced, with the percentage difference between the maximum and minimum 

estimates (Table 7 - defined as in Equation 1) being between 41.57% for scenario FR2 

and 73.22% for scenario UK1. 

 [(max - min) / mean] x 100 (1) 

Particularly noticeable (Figure 1) are the fact that CPLAN results in an 

unusually high GHG emission estimate (in comparison to the other tools) for scenario 

UK1, whereas the COOL Farm Tool results in an unusually low estimate for scenario 

IT1, both of which appear to be a function of the way in which emissions from the 

livestock themselves (e.g. those from enteric fermentation) are assessed in these tools. 

However, these are far from the only differences between tools, which is a reflection of 

the differing methodologies and approaches taken, as well as the amount of entered data 

utilised. 

(Table 7 near here) 

There is also no consistent inter-scenario pattern in terms of which calculators 

produce the highest/lowest GHG emission estimates. Although the COOL Farm Tool 

produces the lowest estimates for three of the scenarios (FR1, IR1, UK1) with another 

two being produced by IMPACCT (FR2, PL1), the highest estimates are split equally 

between CPLAN, CCalC and the Farm Carbon Calculator, with two each. 

Despite the above however, it is clear from Figure 2 (and to a lesser extent 

Figure 1) that in the main, there is little disagreement as to which elements of the farms 

activities are responsible for the bulk of the GHG emissions. In the case of these dairy 

farms, this is down to the livestock themselves (e.g. through enteric fermentation), with 

this category of emissions accounting for between 35.5% (the Farm Carbon Calculator 

and scenario PL1) and 96.2% (CPLAN and scenario UK1) of the calculated emissions 



 

 

(mean = 69.1%, standard deviation = 13.5%), which is a clear indication of the 

important relationship between livestock numbers and GHG emissions noted previously 

by O’Mara (2011). In contrast emissions resulting from cropping activities, other 

activities (e.g. pesticide use) and in the main direct energy use, were relatively low. The 

exception to this in the latter case, was in relation to scenario PL1, which had 

considerably higher than expected fuel consumption. For this scenario IMPACCT 

resulted in a significantly lower emission estimate than any other tool, as a result of the 

fact that unlike other tools, IMPACCT doesn’t account for fuel use directly, but instead 

by estimating it from the practices occurring on the farm. Consequently, if a farm falls 

well outside of the norm in this respect, it may not be picked up. Emission estimates 

associated with nutrient application (fertilisers and manures) demonstrated the most 

variation, accounting for between 1.7% and 51.9% of the GHG emissions calculated for 

a given scenario (mean = 15.1%, standard deviation = 11.51%); with the Farm Carbon 

Calculator producing consistently higher estimates (associated with emissions due to the 

use of inorganic fertilisers) than any other tool. Emissions due to cropping are only 

significant in CCalC and the European Carbon Calculator. 

(Figures 1 & 2 near here) 

Discussion 

It is clear from the above results, that the tools assessed are only able to pick up broad 

differences between the GHG emissions from the assessed production scenarios, 

particularly once those emissions are apportioned by some functional unit. Indeed, there 

is considerable variation between the estimates produced by the tools, and little or no 

consistent pattern in terms of the relative magnitude of the emission estimates produced 

by the different tools, which is no doubt a reflection of the varying approaches taken by 

them, and because simplifications and/or assumptions are an inevitable element of all 



 

 

carbon calculators (to a greater or lesser extent). Calculators are generally less complex 

than true GHG emission models, and are intended to inform users without the in-depth 

scientific understanding required by many models (Whittaker et al., 2013), and as a 

result, compromises have to be made in favour of system usability. Nevertheless, the 

extent to which this is done varies considerably. The above tool characterisation process 

revealed that some tools for example, take into account factors such as animal diet 

(variations in which may be a key way to control GHG emissions) whilst others make 

no attempt to do this and rely instead on standard emission factors. Indeed, even for 

something seemingly as simple as direct energy use (where fuel use amounts are 

entered, as is the case in all the tools apart from IMPACCT), most models use a single 

emission factor for use of electricity, whilst others (most notably CCaLC) allow the 

country in and method by which (i.e. fuel sources - coal, nuclear, renewable) that 

electricity was generated to be taken into account. It is beyond the scope of this piece of 

work to comment on which system actually produces the most accurate results (in terms 

of reflecting real GHG emissions), if indeed any system consistently does so, but it is 

reasonable to presume that where local conditions and factors can be taken into account, 

there is a greater likelihood of accurate emission estimates, albeit that they are still 

estimates. 

In light of the above, it would be easy to question the usefulness of such systems 

when it comes to making sound decisions as to where an individual business should 

focus its effort in order to reduce GHG emissions (or indeed improve GHG performance 

more broadly), and adopt a programme aimed at delivering SI. However, in reality this 

may be more of an issue in relation to the ‘reporting’ function of carbon calculators 

(Whittaker et al., 2013), in which external groups (regulators, buyers, etc.) wish to make 

comparisons between producers, particularly in area or production based evaluations. 



 

 

For example, in order to identify poor performers on a per hectare basis, or to include 

the better performing producers (per unit of production) within their supply chain. It 

may be significantly less important when it comes to on-farm management decisions, in 

which identifying key issues for a particular business to address, is often more 

important than making comparisons with others. 

In relation to this farm management role, the key factor is the ability of the 

various carbon calculators to perform their awareness raising and mitigation option 

assessment roles, since SI is most likely to be delivered at a national/international scale, 

if all businesses are functioning to their best achievable level (e.g. greatest efficiency 

achievable in their own location). As far as the former is concerned, there can be little 

doubt that they are all quite capable of identifying the key role played by the livestock 

themselves in controlling the GHG emissions of dairy enterprises, due to the effects of 

enteric fermentation (O’Mara, 2011), and that even a small percentage reduction here 

would be highly beneficial, whereas an equivalent reduction in relation to cropping or 

(in most cases) direct energy use would be less so. Although clearly if energy use (for 

example) can be reduced it should be. Identifying key areas in which action could be 

taken is however, only part of the story, since in order to do so, farmers require true 

‘decision support’ as opposed to ‘information provision’. The simplest tools (e.g. 

CPLANv0) however, provide little or no information of this sort, meaning that although 

they may be extremely valuable in terms of communicating the scale of the problem and 

for highlighting the need to act, they may be of less value when it comes to guiding 

practical farm management decisions and formulating climate change mitigation 

strategies, as this requires farmers to identify potential mitigation activities and make 

informed choices between them (Franks & Hadingham, 2012). Fortunately, most tools 

(e.g. CALM, CCaLC and the COOL Farm Tool) go at least some way towards 



 

 

addressing this issue by apportioning emissions by source and in some cases breaking 

them down by gas type. In so doing they may highlight particular issues of concern 

within a production system, allowing further information and solutions to be sought. 

Others still (IMPACCT and the European Carbon Calculator) go a sizeable step further, 

and attempt to identify solutions for the user (or at least options they may wish to 

consider), and in so doing they become considerably more powerful as decision support 

aids, allowing dairy farmers to make changes to their activities which result in real 

climate change mitigation benefits, and increases in production efficiency that deliver 

SI. It is however, no coincidence that the tools which are capable of providing the most 

advice, are also those with the highest data input requirements, which reflects the fact 

that to provide genuinely site and business specific advice, a considerable amount of 

underlying data is required. Users of other systems could of course take advantage of 

the more generic advice that is available, for instance in the form of internet based best 

practice guidance; but this may be less likely to steer agricultural decision makers in the 

most appropriate direction. 

Conclusions 

The investigations carried out for this study have highlighted a number of issues. 

Firstly, the GHG emissions of the dairy sector are heavily dependent on the livestock 

themselves, most notably through enteric fermentation, something which is backed up 

by the findings of other authors in the field who have pointed to this being the case at 

the global scale (e.g. O’Mara, 2011). Equally, it is evident that there is considerable 

variation between the GHG emission estimates produced by different carbon 

calculators, but that many of the negative issues which might be associated with this, 

are more likely to be a concern for those trying to make comparisons between farm 

businesses, than for farm management practitioners trying to identify areas of concern 



 

 

in which improvement is possible. Nevertheless, the extent to which the carbon 

calculators studied can be said to provide ‘decision support’ varies considerably, with 

some of the simpler systems being capable of little more than raising awareness of the 

key issues being faced by the industry. Such systems can however, be easy to use, 

require very little data entry, and as a result provide an essential entry point for many 

into the world of GHG emission mitigation. In contrast, those tools capable of providing 

a good deal of site and enterprise specific advice, are more complex to use, may take 

significantly longer, have heavy data requirements and/or require a good deal of 

practice to use them (in the first instance at least). Despite this however, they are more 

likely to be of practical use in guiding farm management decisions and pushing forward 

the sustainable intensification of the industry, due to the relatively bespoke nature of the 

advice given. 
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Table 1. Key tool characteristics evaluated. 

Characteristic Description 

Stated/implied aim How tool developers envisage their system being used. 

Targeted end users Farmers, regulators, retailers, etc. 

Functional unit The way in which GHG on-farm GHG emissions are 

apportioned. 

Data needs How much data input is required? 

On-farm data availability Is additional data collation needed, or is all data likely to 

be readily available? 

Detail of analysis How much emission estimates are broken down by type / 

source. 

Entry of cattle numbers Is there any differentiation by age / productivity? 

Entry of other livestock Is there any differentiation by age / productivity? 

Cattle feeding / grazing Is any account taken of livestock diets? 

Livestock housing Does the model differentiate between housed and grazed 

livestock? 

Approach to inorganic 

fertiliser use 

To what degree is N content accounted for? 

Approach to organic manure / 

slurry use 

To what degree is type / N content accounted for? 

Direct energy use How is this recorded? 

Scope 3 emissions included? Are emissions resulting from the production of inputs 

(e.g. fertilisers) accounted for? 

Sequestration included? Is sequestration of atmospheric carbon included in the 

GHG balance? 

Output design, reporting & 

data storage facilities 

What from does the output take and can it be saved for 

later retrieval? 

  



 

 

Table 2. Livestock units (LU) used to apportion greenhouse gas emissions (Redman, 

2016). 

Animal type LU  Animal type LU 

Dairy cow 1.00  Other cattle 0-1 years 0.34 

Suckler cow 0.80  Other cattle 1-2 years 0.65 

Bull 0.65  Other cattle >2 years 0.80 



 

 

Table 3. Characteristics of assessed carbon accounting tools. 

Tool 
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CPLANv0 IPCC tier 1 & 

national inventory 

Online 1 & 2 Light Type & number No No No No Source No 

CALM IPCC tier 1 & 

national inventory 

Online 1, 2 & 

some 3 

Modest Number & 

productivity or age 

No No Yes Yes Source 

& gas 

Online 

CCaLC ISO 14044 & PAS 

2050 

Application 1, 2 3 High Liveweight No No No Yes Source Off-line 

COOL IPPC tier 2 Online 

(ex. Excel) 

1, 2 & 

some 3 

High Number, type & 

age 

Yes Yes Yes Yes Source 

& gas 

Online 

(limited in 

free copy) 

IMPACCT IPCC tier 2 (some 

3) & PAS2050 

Application 1, 2 & 3 High Number only Yes Yes Limited Yes Source 

& gas 

Off-line 

Farm Carbon 

Calculator 

Own Online 1, 2 & 

some 3 

Moderate Type & number Yes Yes Partial Yes Source Online 

(limited No.) 

European Carbon 

Calculator 

IPCC tier 2 Excel 1, 2 & 3 Very high Type, age & 

number 

Yes Yes Partial Yes Source 

& gas 

Off line 



 

 

Table 4. Site characteristics of studied farm scenarios. 

Farm Country 

Climate Soil 

Climatic zone 

Precipitation 

(mm yr-1) 

Reference 

group 

Dominant 

surface texture pH 

FR1 France Warm 

temperate moist 

694 Cambisol Medium fine 

silty clay loam 

5 

FR2 France Warm 

temperate dry 

618 Luvisol Medium clay 

loam 

6 

FR3 France Warm 

temperate moist 

694 Cambisol Medium silt 

loam 

5 

IT1 Italy Warm 

temperate moist 

809 Cambisol Coarse sandy 

loam 

7 

PL1 Poland Cool temperate 

dry 

566 Luvisol Medium clay 

loam 

5 

UK1 UK Cool temperate 

moist 

1,053 Gleysol Medium silty 

clay loam 

4.5 



 

 

Table 5. Livestock production characteristics of studied farm scenarios. 

Farm 

Livestock (number) 

Animals 

housed 

(% year) 

Cows  Heifers 

Dairy Pregnant Suckler Dry Bulls 

Calves / <1 

year 1-2 year >2 year 

FR1 100 - - - - - 36 - 0 

FR2 198 - 20 - 1 51 30 41 100 

FR3 50 - - - - - 60 - 25 

IT1 340 150 - 50 - 60 200 - 25 

PL1 25 - - - - - 8 - 33 

UK1 150 - - - - 93 72 85 50 

 Diet (kg DM dairy cow-1) 

 

Grass Hay 

Silage Rolled 

wheat 

Concentrate 

Farm Grass Maize Lucerne Triticale Wheat Barley Rapeseed 

FR1 4,406 - - 680 - - 474 - - - 

FR2 - 2,193 793 2,878 - - 306 - - - 

FR3 1,617 - 1,551 1,320 - - 694 207 138 - 

IT1 3,123 - - 215 142 570 - 1,206 402 402 

PL1 3,673 - 1,411 - - - - - - - 

UK1 1,990 - 2,351 611 - - - 1,135.8 378.6 378.6 



 

 

Table 6. Cropping, milk yield and energy use characteristics of studied farm scenarios 

(numbers in brackets = number of applications used to achieve total). 

 

Product 

Area 

(ha) 

Yield 

(t ha-1 / 

L milk) 

Fertilisera 

(kg-N ha-1) 

FYMb 

(t ha-1) 

H/F/GRc 

(kg-AI ha-1)d 

Energy 

use 

FR1 Triticale: feed 12.7 4.5 90 (1) - 1/0.32/0.6 - 

 Maize: silage 11 12 50 (1) - 0.88/0/0 - 

 Grass: grazed 104 10 190 (3) - 0/0/0 - 

 Milk - 460,000 - - - - 

Red diesel (L) - - - - 2,986 

Grid electricity (kWh) - - - - 11,635 

FR2 Maize: silage 49 16 35 (1) 25 (1) 0.88/0/0 - 

 Triticale: feed 13.5 4.5 72 (1) 30 (1) 1/0.32/0.6 - 

 Grass: silage 31.4 11 188 (4) 20 (1) 0/0/0 - 

 Grass: hay 112.3 5 58 (1) 20 (1) 0/0/0 - 

 Milk - 1,311,000 - - - - 

Red diesel (L) - - - - 10,088 

Grid electricity (kWh) - - - - 16,619 

FR3 Triticale: feed 10 4.5 90 (1) - 1/0.32/0.6 - 

 
Grass: 1 cut/ 

grazed 
35 10 294 (3) 50 0.88/0/0 - 

 

Cereal mix: 

60% wheat, 

40% barley) 

4 6.6 120 (2) - 1.23/1/1 - 

 Maize 14 12 32 (1) 30 0.88/0/0 - 

 Milk - 316,000 - - - - 

Red diesel (L) - - - - 1,347 

Grid electricity (kWh) - - - - 4,410 

IT1 Wheat: feed 35 8.6 183 (2) 12 (1) 1.23/1/1 - 

 Lucerne: feed 15 5 - - 1.2/0/0 - 

 Maize: silage 8 16 32 (1) 30 (1) 0.88/0/0 - 

 Grass: grazed 220 10 334 (1) 10 (1) 0/0/0 - 

 Milk - 2,600,000 - - - - 

Red diesel (L) - - - - 20,943 

Grid electricity (kWh) - - - - 28,963 

PL1 Grass: grazed 15 10 187 (2) 5 (1) 0/0/0 - 

 Grass: 2 cut 10 7 194 (2) 10 (1) 0/0/0 - 

 Milk - 133,500 - - - - 

Red diesel (L) - - - - 23,159 

Grid electricity (kWh) - - - - 12,024 

UK1 Grass: grazed 50 11 194 (4) 10 (1) 0/0/0 - 

 Grass: 3 cut 58 12 258 (4) 20 (1) 0/0/0 - 

 Maize: silage 17 12 258 (1) 30 (1) 0.88/0/0 - 

 Milk - 1,387,500 - - - - 

Red diesel (L) - - - - 9,547 

Grid electricity (kWh) - - - - 21,652 
a Fertiliser = NH4NO3,     b FYM = farmyard manure, 
c H/F/GR = herbicide/fungicide/growth regulator,  d AI = active ingredient. 



 

 

Table 7. Summary of the range of total GHG emission estimates produced for six dairy 

farm scenarios using seven different carbon calculators. 

 FR1 FR2 FR3 IT1 PL1 UK1 

Mean 710.77 1,605.69 515.61 3,788.88 241.34 1,802.66 

Standard Deviation 145.38 289.67 77.01 826.19 42.79 432.82 

Range 379.25 893.96 214.33 2,376.52 103.88 1,319.86 

Minimum 506.83 1,198.91 395.89 2,558.60 191.46 1,371.54 

Maximum 886.08 2092.87 610.22 4,935.13 295.34 2,691.40 

% Difference 53.36% 55.67% 41.57% 62.72% 43.04% 73.22% 

  



 

 

Figure 1. Greenhouse gas emission profiles for six farm scenarios - a) total emissions, 

b) emissions per productive farm hectare, c) emissions per livestock unit, d) emissions 

per unit of milk production. 

 

Figure 2. Comparative total GHG emission range plots produced for six farm scenarios, 

broken down into five broad categories of emission source (energy/fuel use, crop 

residues, livestock, nutrient application, others). 
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