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Abstract. Carbon is a critical component of soil vitality and is crucial to our ability to produce food. Carbon se-

questered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global

climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a

market value for this vital global ecosystem service: markets being what economists regard as the most efficient

institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper consid-

ers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural

constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact

demand for the service from private and public sector agents. In essence, this is a case of significant market

failure. In the design of alternative policy options, we consider whether soil carbon mitigation is actually cost-

effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural

incentives that hinder policy options. We suggest that reducing the cost and uncertainties of mitigation through

soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to

eventually facilitate wide-scale adoption of these measures.

1 Introduction

Soil resources underpin all ecosystem service categories and

as a critical natural capital they are vital for regulating bio-

physical processes and ultimately human wellbeing. But hu-

man pressures, including population growth, climate change,

urbanisation and food demand, are depleting soil stocks and

undermining the flows of the valuable services they provide.

These services include the climate mitigation and adaptation

functions, the importance of which is now becoming more

fully appreciated by policymakers.

There are many reasons to maintain soil, but this paper

focuses on the regulating service provided by carbon (C) se-

questration, which can provide a compelling economic rea-

son for soil conservation and management. We focus on the

supply and demand for this service, which locates soil in the

broader global policy agenda of climate change mitigation.

Much of this discussion is applicable to land use in both de-

veloped and developing countries. The paper is structured as

follows. Section 2 provides an introduction to the biophysical

properties of soil to sequester carbon and the way this can be

influenced by specific management practices. Section 3 con-

siders a number of relevant economic concepts in relation to

both market and policy developments for valuing soil carbon

sequestration. Sections 4 and 5 provide a brief discussion and

a conclusion.

2 The basis of soil carbon sequestration

Soil carbon sequestration is all about soil organic matter

(SOM); how to maintain and increase it, how to assess and
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promote its value and how to measure and monitor it. The

types of organic matter in soil (consisting of 55–60 % C by

mass) span an enormous range of compounds and proper-

ties that collectively influence and govern major soil func-

tions that affect plant growth, element cycling and ecosys-

tem carbon balance. In terms of plant nutrition, organic mat-

ter supplies much of the nitrogen (N), phosphorous (P) and

sulfur (S) utilised by plants in native ecosystems and signifi-

cant amounts in many highly managed agricultural systems.

More broadly, much of the cycling of N, P, S and other plant

nutrients, between organic and inorganic forms and gaseous,

aqueous and precipitated phases are driven by biogeochemi-

cal and biophysical processes involving the soil organic mat-

ter. Finally, SOM-C is one of the largest terrestrial C pools,

and thus C flux as CO2 between soil–plant systems and the

atmosphere has a direct impact on the Earth’s C budget and

CO2 concentrations in the atmosphere.

The carbon contained in SOM is the result of a dynamic

balance of plant-derived C added to soil as organic residues

and C losses from SOM, primarily as CO2 respired by the

soil biota. Gains or losses of soil organic C stocks reflect ei-

ther a net uptake of CO2 (via the plant) or a net release of

CO2 from/to the atmosphere. Thus, soil carbon sequestration

can be achieved by increasing plant C inputs to soils, storing

a larger proportion of the plant-derived C in the longer-term

C pools in the soil, or by slowing decomposition (Paustian et

al., 1997).

A variety of management practices, particularly in crop-

land and grassland soils, can influence these process-level

controls on soil C sequestration, and values for individual

practices or combinations of practices have been extensively

reviewed (e.g. Denef et al., 2011; Eagle et al., 2012; Fran-

zluebbers, 2010; Ogle et al., 2005; Paustian, 2014; Smith et

al., 2008). A further review of soil C sequestration rates and

potentials by different management practices, soil types, cli-

mate regions, etc. is beyond the scope of this paper. Nonethe-

less, a short overview of the broad classes of management

interventions that can be used (also see Paustian, 2014) will

serve as a background for the discussion of the economics of

C sequestration.

Increasing plant C inputs to SOM by increasing net pri-

mary production (NPP) and/or the proportion of NPP enter-

ing the soil (i.e. as root material or post-harvest residues)

can take a variety of forms. Shifting from annual to peren-

nial plants (e.g. increased proportion of ley crops in rotation,

arable land set-asides) is among the most effective ways since

perennials – particularly grasses – tend to allocate a much

higher proportion of C to root systems, which may also yield

a higher proportion of the added C as SOM (Rasse et al.,

2005). However, substituting perennials for annual crops has

potential “leakage” effects if annual crop production is dis-

placed to previously uncultivated soils (see below). Increas-

ing the duration of vegetation cover by planting during bare

fallow periods (i.e. cover crops, reducing summer fallow fre-

quency in semi-arid systems) can increase plant-derived C

inputs without displacing food crops, although agronomic

and economic feasibility need to be considered. Finally, in-

creasing productivity of the existing crop vegetation can be

achieved by reducing nutrient and/or water limitation, by in-

creasing fertiliser and irrigation inputs. In many cases, in-

creased NPP may be largely towards harvested products and

not greater residues, while increasing the level of manage-

ment inputs may increase production of non-CO2 greenhouse

gases (GHGs) (i.e. N2O, CH4), negating all or some of in-

creased soil C stocks.

Exogenous additions of organic matter, particularly those

containing less decomposable, more recalcitrant organic

matter fractions (e.g. livestock manure, compost, biochar)

can increase soil C stocks both from the C addition itself and

from a stimulation of plant C inputs that may result from the

soil amendment. Inclusion of the amended C itself as part of

the C sequestration may or may not represent a removal of

atmospheric CO2, depending on the effect of the C removal

from its original place of origin. Hence a broader compar-

ative life cycle approach would be needed to quantify the

GHG mitigation impacts.

There are two principal ways by which soil management

practices can reduce rates of decomposition and thereby in-

crease the stock of C stored in soils. One is by reducing the

level of physical disturbance of the soil by reducing tillage

intensity – through adoption of reduced or no-till methods

in annual crops as well as with the reduction or elimination

of tillage through conversion of annual to perennial crops. It

is well recognised that the mixing and changes in soil struc-

ture associated with tillage tends to stimulate microbial ac-

tivity and SOM decomposition, and that reduced tillage can

promote the formation of more stable soil aggregates that

can partially protect some organic matter from microbial at-

tack, leading to longer mean residence times for SOM (Six

et al., 2000). However, reduction in tillage may be associ-

ated with issues including increases in the accumulated weed

seeds in the soil (Cardina et al., 2002). Another direct effect

on decomposition rates is associated with management of

flooded or partially flooded soils. Flooding tends to greatly

reduce organic matter decay rates due to reduced aeration.

Soils formed under these conditions (peat and muck soils

as well as “aquic” soils) and which have subsequently been

drained for agricultural uses can have sustained rates of CO2

loss, of the order of > 10 Mg C ha−1 yr−1 over many years.

Hence, reverting such soils to wetland conditions or even re-

ducing water table depths while maintaining agricultural use

can substantially reduce emissions.

Common to all three of the overarching processes for

C sequestration – increased plant-derived C inputs, added

recalcitrant C pools to soils, slowed decomposition – and

the management practices involved, are that (i) the rates of

C accumulation are modest1, in most cases less than 0.5–

1Some higher rates of soil organic carbon accumulation (of

the order of 1–3 Mg C ha−1 yr−1) have been reported for perennial
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1 Mg C ha−1 yr−1, (ii) the duration of C accumulation is lim-

ited, generally occurring over no more than a few decades

and with decreasing rates over time2, (iii) the actual impact

in terms of GHG mitigation often must also consider effects

on other gases (i.e. full GHG accounting) and potential indi-

rect and off-site impacts (e.g. leakage).

While there are many advantages to soil C sequestration,

and “win–win” and “no regrets” options can be identified

(Smith, 2012), there are a number of issues associated with

soil C sequestration which need to be addressed to make it

effective as a climate mitigation option (Smith, 2005, 2008).

These issues are (i) the limited duration of the carbon sink

(the carbon is only removed from the atmosphere up un-

til the soil reaches a new equilibrium carbon level (Smith,

2005), (ii) non-permanence (carbon sinks can be reversed

at any stage by poor soil management (Smith, 2008), and

(iii) leakage/displacement (e.g. increasing soil C stocks in

one area may lead to soil C losses in another; IPCC, 2000).

Smith (2012) reviewed these is some detail.

Soil carbon pools are smaller now than they were be-

fore human intervention. Historically, soils have lost between

40 and 90 Pg C globally through cultivation and disturbance

(Houghton, 1999; Houghton et al., 1999; Schimel, 1995; Lal,

1999). There have been various estimates of the global tech-

nical potential for soil carbon sequestration, which have been

made in different ways. For soil carbon sinks, the best op-

tions are to increase C stocks in soils that have been de-

pleted in carbon, i.e. agricultural soils and degraded soils.

Estimates of the potential for additional soil carbon seques-

tration vary widely, with early estimates based on an assumed

potential to restore historic losses. These estimates were of

the same order as for forest trees, which could sequester be-

tween about 1 Pg C yr−1 (the lower figure of IPCC, 1996)

and 2 Pg C yr−1 (Trexler, 1988 (cited in Metting et al., 1999);

∼ 3.7–7.3 Pg CO2 yr−1), which at the time, was between one-

third and two-thirds of the annual increase in atmospheric

carbon levels. Other studies during the 2000s suggested sim-

ilar potentials, with the most recent estimates falling within

this range. The most recent estimates are 1–1.3 Pg C yr−1

(Smith et al., 2008) and 3.7–4.8 Pg CO2 yr−1 (Lal, 2004).

Economic mitigation potentials are considerably lower than

these technical potentials (Smith et al., 2008), and this is the

subject of the following sections.

grass conversions on annual cropland or degraded pastures (Conant

et al., 2001) and avoided losses of C through rewetting of peat soils

can be of the order of 10 Mg C ha−1 yr−1 or more (Smith et al.,

2008)
2Different carbon sources have different soil residence times; for

example, higher residence times have been suggested for biochar,

although some of the claims remain contested.

3 Economics of soil C sequestration

Why is soil carbon management an economic issue? The

short answer is that it may be a relatively low-cost way of

reducing emissions and governments might therefore want

to prioritise it over other expensive ways of addressing cli-

mate change. More generally, the sequestration function is

scarce and has non-renewable characteristics, and we have to

make choices about how to manage (or invest in) it to gain

the greatest benefit for society. The weighing of input costs

and output benefits is generally what defines an economic

issue. Making choices typically requires us to develop com-

mensurate metrics to help guide decision-making.

Alternatively we can consider soil or land, together with

man-made capital and labour, as inputs to the production

of food. The way soils are managed in the production of

food also determines the generation of other ancillary or co-

incidental outputs related to the composition and function-

ing of soil ecosystems, including the regulation of water

flows, and of specific interest here, the regulation of car-

bon (GHG) emissions from soil. A key distinction to note

is that while the food production is largely a private pro-

cess (i.e. privately owned inputs generating output that can

generate “capturable” revenue for the provider), the gener-

ation of other ecosystem services (or disservices) has the

nature of more of a public good. This means that the pri-

vate actions generate outcomes or so-called externalities that

are less tangible or capturable for the provider. These out-

puts are enjoyed by others who do not pay for the bene-

fits they provide, and generally cannot be feasibly excluded

from their enjoyment. This distinction between capturable

and non-capturable benefits is an important factor in why

markets for soil goods and services “fail”, and why they may

not spontaneously emerge. It also plays an important role

when it comes to public policy and the development of incen-

tives to manage soils for their carbon sequestration benefits,

sometimes termed internalising the externality.

The value of soil carbon, or more technically the ability

of soil to sequester carbon, is currently the most conspicu-

ous global public good benefit arising from soil management.

Maintaining stocks of soil carbon adds to the global green-

house gas mitigation effort and contributes to avoiding costs

from damages associated with the stock of greenhouse gases

already accumulated in the atmosphere. This climate benefit

can be valued in two different ways. First, we can try to esti-

mate what the actual damage costs of another unit of carbon

emissions might be – the so-called shadow cost of carbon.

Alternatively, we can look at markets where this type of car-

bon mitigation is already traded to determine the prevailing

willingness to pay for carbon that is sequestered by differ-

ent means, including through soils. Both routes present chal-

lenges that mean that we are only able to determine a notional

value for soil carbon. Nevertheless the values are indicative

and provide signs of significant incentives to sequester soil

carbon.

www.soil-journal.net/1/331/2015/ SOIL, 1, 331–339, 2015



334 P. Alexander et al.: The economics of soil C sequestration and agricultural emissions abatement

3.1 The shadow price or social cost of carbon

Early in the debate about cutting global greenhouse gas emis-

sions and the role for governments in mitigation, a need was

recognised for a single metric or pseudo price to reflect the

damage cost of emitting carbon. This signal, in effect an im-

puted extra externality cost, would then help steer develop-

ment away from carbon-intensive growth options. The so-

cial cost of carbon (SCC) was the metric to do this job. The

SCC represents the value or full cost of an incremental unit

of carbon (or greenhouse gas equivalent) emitted now, calcu-

lating the full cost of the damage it imposes over the whole

of its time in the atmosphere. It measures the externality that

needs to be incorporated into our current decisions on pol-

icy and investment options. The SCC matters because it sig-

nals what society should, in theory, be willing to pay now

to avoid the future damage caused by incremental carbon

emissions. Because the amount of damage caused by each

incremental unit of carbon in the atmosphere depends on the

concentration of atmospheric carbon today and in the future,

the SCC varies according to the emissions and concentra-

tion trajectory the world is on. Needless to say the actual

calculation of an SCC is fraught with difficulties and there

has been much debate about the relevant emissions scenar-

ios, damage categories that are included in the calculation,

and how we should treat future costs and benefits (includ-

ing highly controversial values for human life, or “value of

statistical life”). Much of this debate was neatly summarised

in Stern (2007), which gave further impetus to the need for

a carbon price metric by demonstrating the potential global

damage cost outcomes by not acting on emissions mitigation.

Suffice to say that several governments have adopted certain

values that are now routinely considered in public investment

appraisal (cost–benefit analysis) decisions. For example, the

UK government currently advises a short term price of car-

bon of GBP 60 per tonne carbon dioxide equivalent (CO2e)

in 2020 (DECC, 2009), with this damage cost rising further

into the future. Table 1 shows similar values employed by

the US Environmental Protection Agency. In the table the es-

timates are shown according to the alternative discount rate

assumptions used to collapse predicted future costs to their

present value equivalents.

3.2 Formal carbon markets

A carbon price has also emerged from the interaction of sup-

ply and demand in the formal carbon market which is de-

veloping in many parts of the world in response to direct

government regulation of industrial emissions. At the same

time as they introduced a shadow price of carbon for use in

their own appraisals, many governments have also acted to

regulate the significant level of emissions generated by pri-

vate sector sources. High emissions sectors such as energy,

manufacturing and transport can be regulated in a number

of ways including voluntary measures or more direct regula-

Table 1. Social cost of carbon (2011 USD / t CO2) for specific dis-

count rates. Source: EPA (2014).

Year 5 % Average 3 % Average 2.5 % Average

2015 12 39 61

2020 13 46 68

2025 15 50 74

2030 17 55 80

2035 20 60 85

2040 22 65 92

2045 26 70 98

2050 28 76 104

tion on the levels of emissions. But economic theory has for

a long time advocated the role of market-based approaches

as an efficient alternative to direct regulation for controlling

emissions. In the context of carbon, this has led to a con-

siderable debate over the relative merits of a carbon tax ver-

sus an emissions trading scheme. The relative merits of these

alternatives have been widely debated (see Parry and Pizer,

2007), with a strong argument made for the certainty deliv-

ered by an overall cap on emissions and the allocation of

permits to emit a share of the cap. This process is the essence

of a carbon market where polluters hold permits and can sell

any they do not use as a result of avoiding emissions. In this

way market-based instruments (MBIs) harness the incentive

of participants to seek their own ways of reducing emissions

in order to profit at the expense of other polluters who find

it more costly to mitigate and may therefore need to acquire

more permits. The price of carbon or for permits is then de-

termined by the interaction of supply and demand. Regional

markets have evolved in different parts of the world. The Car-

bon Brief (2014) documents 46 carbon markets in operation

with notable examples in Europe, North America, and Aus-

tralia and more recently a pilot scheme in China. Like other

asset markets, carbon markets have been depressed during

the recent global recession, leading some commentators to

lament the impact of their introduction. This downturn is

likely to be temporary, but ultimately the increasing number

of markets represents a trajectory for the evolution towards a

global carbon price, which is the most efficient global solu-

tion to what Stern (2007) termed the “greatest market failure

the world has seen”.

The existence of carbon markets creates a distinction be-

tween traded and non-traded sectors. The former are the key

polluters that have been obliged to participate through the al-

location of permits by governments, for example, industries

in the European Union Emissions Trading Scheme. These

tend to be the more conspicuous sources that are easily mon-

itored. But for technical reasons, some sectors such as agri-

culture – and hence soil – are not included in these markets.

Here the measurement and therefore control of emissions is

biophysically complex and typically come from thousands of

small operators. In short, both the supply and demand con-

SOIL, 1, 331–339, 2015 www.soil-journal.net/1/331/2015/
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ditions for reliable permits are difficult to ascertain, leading

to uncertainty about how market supply and demand could

set the associated carbon price. Market development will

therefore depend on improvements in the monitoring, report-

ing and verification of emissions, and the development of

monitoring at scale across many farms. These issues are in

addition to the permanence issue that was previously men-

tioned. In practical terms, the benefits of including millions

of small sources in any MBI could not possibly outweigh the

so-called transaction costs (De Pinto et al., 2010). This ulti-

mately means that some sources of emissions mitigation, in-

cluding soils, are largely excluded from the powerful incen-

tive to take part in formal emissions trading. In this case the

only alterative policy or market options are voluntary com-

pliance or informal carbon markets.

3.3 Voluntary compliance and informal markets

Beyond formal trading arrangements there is also a grow-

ing voluntary credit and offset carbon market that has de-

veloped largely around forestry and renewable energy and

in some cases soil. These transactions are in theory an op-

tion for anyone who can offer valid emissions reductions to

anyone who wants to buy them; theoretically this demand

might come from industries in the traded sector (i.e. inside

a formal trading scheme) who find it more costly to com-

ply with their obligations and who are willing and allowed to

pay for validated offsets in the informal sector. A recent ex-

ample of a voluntary scheme that aims to reduce the amount

of greenhouse gas entering the atmosphere from activities on

the land is the Carbon Farming Initiative in Australia (Aus-

tralian Government, 2014). This objective therefore creates a

blurred boundary between formal and informal trading sec-

tors; the rules varying globally according to formal scheme

stipulations. In practice and irrespective of scheme rules, the

demand can come from anyone wishing to substantiate their

green credentials by purchasing validated carbon credits to

offset their own emissions.

The recent level of soil carbon credit transactions in in-

formal schemes has been mixed. This has much to do with

the difficulties of certification and measuring, reporting and

verification, which in turn influence the demand and willing-

ness to pay for this form of credit relative to more verifiable

and permanent credit sources (e.g. in forestry). Thus, where

soil credits have been created and traded, they have tended to

transact at low values, reflecting their uncertainty.

What constitutes a valid reduction for a verified and val-

idated credit is a sticking point to market growth. There is

much uncertainty about how to verify the variety of agricul-

tural emissions reductions as the basis of valid credits. This is

reflected in a variety of protocols and farm-based calculators,

none of which can claim to be an industry protocol or stan-

dard. Even if a standard tool could be agreed upon, further

concerns relate to the permanence of reductions and whether

they are additional to what would have happened anyway.

Other commentators suggest that emissions reductions will

simply lead to displacement abroad if they are associated

with lower domestic output as a result (Carlton et al., 2010).

Ultimately, this means that voluntary contracts in agriculture

are more complex and viewed as less reliable than say wood-

land credits, which are technically more verifiable. This in

turn means that such credits are likely to be valued much less

than more definite emissions reductions from, say, forestry.

Indeed forestry offsets constitute the majority of early volun-

tary trades worldwide.

Nevertheless, considering better science and monitoring it

would be hasty to assume that these problems cannot be over-

come. International experience, particularly with soil carbon

credits, has shown that a market for credits can be based on

more pragmatic measurements applied on a regional scale.

In a number of Canadian provinces and US states, as well as

in several developing countries, uncertainty has simply been

side-stepped with regional voluntary credit markets emerging

based on default soil carbon values. More ambitious initia-

tives in China seek to unlock soil carbon payments for grass-

land management: in a FAO and ICRAF partnership with

Chinese science institutions, a joint measuring methodology

that involves modelling has won approval by Verified Carbon

Standard (VCS).

Moreover, validation issues still threaten to depress the

price of soil carbon credits. Serious questions are also be-

ing posed about the validity of stand-alone institutions that

are brokering these trades. For example, the Chicago Climate

Exchange, which was the main independent market for Mid-

west soil carbon credits has apparently been mothballed in

the wake of a depressed US credit market. This in turn re-

flects the failure of the Obama administration to instigate an

economy-wide cap and trade scheme in the US. If there is no

country-wide cap and trade scheme, then there is simply less

pressure for high polluting industries to seek out all avail-

able credits. This inevitably dampens demand for the more

hard-to-get-at reductions offered by agriculture.

3.4 Agri-environmental policies and incentives

When a market-based solution does not emerge, a second

best approach is for governments to intervene on the de-

mand side to transact on behalf of wider society. As noted

above, government creation of a pseudo price in the shape of

SCC already skews development away from carbon-intensive

growth. But governments can also intervene to buy public

goods directly from farmers. Using agri-environmental pay-

ments, many OECD governments have implemented pay-

ments for landscapes, water quality and other environmental

services. While the market relies on the polluter pays prin-

ciple, governments can also incentivise the supply of carbon

sequestration by the “provider get” principle. It can do this

by promoting a variety of soil conservation measures such as

no/low tillage, prevention of compaction, avoidance of peat

conversion and the use of cover/catch crops and reduced bare

www.soil-journal.net/1/331/2015/ SOIL, 1, 331–339, 2015
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Figure 1. Example MACC curve, showing cost per tonne of CO2e avoided for the farmer and abatement potential for France. Source:

Pellerin et al. (2013).

fallow. These measures can and are included within forms

of mandatory and voluntary schemes in operation in differ-

ent OECD countries. The schemes are often based on pay-

ment for costs incurred and foregone revenues, with mon-

itoring largely by observing input compliance rather than

outputs, which are less visible and more problematic to ver-

ify. This latter distinction creates further economic incentive

challenges which are addressed below.

Other economic criteria are necessarily considered in the

choice of measures for inclusion within agri-environmental

schemes (OECD, 2010). The first efficiency consideration is

that measures should be cost-effective (CE). The second is,

like all such public good schemes, the design must be mind-

ful of behavioural barriers. Specifically, the fact that there

is asymmetric information between the regulator (govern-

ments) and the agent (farmers), who are being paid to com-

ply with an outcome that is largely unobservable. This form

of principle–agent problem can create incentive compatibil-

ity issues that require a deeper understanding of farmer be-

haviours and motivations.

3.5 Cost-effectiveness

In designing policies which might include soil management

measures, governments want to ascertain the relative effi-

ciency or cost-effectiveness of measures to include. In the

case of carbon sequestration, a key metric is the relative cost

of reducing a tonne of CO2e by soil measures relative to

other agricultural measures (e.g. alternative animal feeding)

or measures in any other sector of the economy. As a rule,

in seeking to meet an overall reduction target, governments

want to choose all measures from the cheapest to the most

expensive, with a threshold set by the shadow cost of carbon,

which defines the benefit relative to cost.

To make this comparison it is necessary to understand rel-

ative abatement costs offered by different measures and to

compare these along a cost schedule called a marginal abate-

ment cost curve (MACC). MACCs collect data on imple-

mentation costs (normally on farm) and the resulting emis-

sions reductions achieved over a time horizon by measure

implementation. Several analyses of agricultural sectors in

different countries have highlighted the potential for rela-

tively low-cost, in some case negative-cost, soil measures;

the latter being the case if a measure both reduces emis-

sions and actually saves rather than costs money to the land

manager or farmer. For example, a nation-wide analysis for

France (see Fig. 1) included analysis of the CE of develop-

ing no-till cropping systems within applicable areas to store

carbon in soils; specific analysis conducted for (i) switch-

ing to continuous direct seeding; (ii) switching to occasional

tillage, 1 out of every 5 years, (iii) switching to continuous

superficial tillage. These measures were selected with an a

priori screening of all possible soil measure for their appli-

cability within French agriculture and known technical ef-

fectiveness. The analysis indicated that the measures have a

cost effectiveness (EUR / t CO2e) of 12 (6 to 233), 8 (4 to

135) and −3 (−2 to 11) respectively; the numbers in paren-

theses indicate levels of analytical uncertainty over both cost

and biophysical effectiveness. While analytical uncertainty is

important to bear in mind, the analysis does suggest that the

continuous superficial tillage option falls into the politically

and economically attractive win–win category. Moreover, all

options would seem reasonable relative to the carbon prices

SOIL, 1, 331–339, 2015 www.soil-journal.net/1/331/2015/



P. Alexander et al.: The economics of soil C sequestration and agricultural emissions abatement 337

outlined in Table 1. And would therefore be likely candidates

for promotion through agri-environmental schemes.

3.6 Incentive and behavioural barriers

MACCs do not show all costs, and some hidden costs

can influence farmer behaviours. The formulation of agri-

environmental measures, cost-effective or otherwise, in-

volves a transaction between a government and farmers will-

ing to opt into relevant schemes that target soil carbon mea-

sures. This transaction is characterised by an asymmetry of

information that must be overcome if the buyer is to achieve

effective and additional soil carbon sequestration, at minimal

cost to society. Problems occur in that the costs of comply-

ing are potentially different between the supplying agents,

and are unobservable to the buyer. This means that a uni-

form compensation rate would be inefficient. The scale of the

monitoring task is also formidable for the regulating agent.

There is also a tendency for moral hazard and adverse se-

lection. Regarding the former, farmers anticipating payments

can exaggerate the gravity of their soil condition and what

they had planned to do with their land. In the latter case, a

payment scheme incentivises the wrong farmers to partici-

pate in schemes, i.e. those who do not offer the best seques-

tration potentials. These problems further increase the trans-

action costs of any scheme, and economists have spent con-

siderable effort considering how schemes can be designed to

reduce the incentives to cheat. Part of the compliance cost

(and quality) challenge can be addresses by monitoring in-

put compliance instead of the largely unobservable levels of

sequestration. This can also include the mandatory use of ac-

counting tools and auditing as a precondition to scheme par-

ticipation.

Ultimately the issue of transaction costs depends on the

behavioural attributes of participating farmers and a deeper

understanding of their intrinsic and extrinsic motives that

govern the internal trade off between private profitability and

the generation of a global public good (carbon sequestra-

tion). Like most of us, farmer behaviours are split by these

motives, although recent psychological insights on targeting

behavioural segments offer hope (Moran et al., 2013).

4 Discussion

Both markets and government policy have a role in increas-

ing soil carbon sequestration, but as this paper suggests there

are barriers in terms of market development and government

policy. The evolution of carbon markets more generally in-

creases the likelihood of all sequestration sources being in-

tegrated into a general global market framework. For this to

happen there is a need for the governing of multilateral agree-

ments on the rules that define carbon credits as credible and

verifiable commodities that are additional and permanent. In

other words, markets cannot work without some degree of

initial regulation.

As a general principle it is important to recognise that soil

carbon sequestration may only be cost-effective in some cir-

cumstances and that the cost-effectiveness calculation can

be extended to include co-benefits from conserving soil, in-

cluding the maintenance of water quantity and quality, bio-

diversity and resilient livelihoods. This aspect in particular

suggests that targeting sequestration in low-income coun-

tries can offer multiple local and global wins in terms of

poverty alleviation and sequestration. Again, the institutional

challenges for monitoring and paying for this service are

formidable though not insurmountable. Recent developments

under the auspices of the United Nations Framework Con-

vention on Climate Change have developed protocols for

the development of voluntary measures in many developing

countries. Further the use of so-called Nationally Appropri-

ate Mitigation Actions (NAMAs) offer a modality for non-

Annex 1 countries to offer mitigation actions for potential

payment by countries and businesses regulated by more for-

mal emissions limits.

Ultimately, however large the overall global technical

potential for carbon sequestration in soil, current barriers

suggest the true achievable contribution is somewhat con-

strained. First, not all sequestration is cost-effective and so

we need to consider the magnitude of this economic poten-

tial as an initial caveat. On a global scale, MACC analysis

similar to the type outlined in the previous section suggests

that economic mitigation potentials for soil C sequestration

are 0.4, 0.6 and 0.7 Pg C yr−1 at carbon prices of 0–20, 0–50

and 0–100 USD t CO2e−1, respectively (Smith et al., 2008;

Smith, 2012). These potentials are somewhat smaller than

the estimated global technical potential.

A further caveat then arises from market and policy (in-

cluding incentive and behavioural) barriers outlined here.

These reduce the economic potential to something we might

consider feasible. The disparity between the overall techni-

cal and feasible potentials is likely to be quite large but it

is narrowing. In itself, it suggests a clear policy and research

agenda on one hand to maximise feasible potential and on the

other to minimise the costs of incentives and the monitoring

and audit processes required to achieve it.

5 Conclusions

This paper highlights how an economic perspective on car-

bon sequestration might guide soil management decisions

by private and public agents. The value of carbon seques-

tration service can be revealed in terms of its input to food

production and climate change mitigation. Focusing on the

latter, this paper has outlined the role of carbon prices and

the prospects for the evolution of global carbon markets that

can provide a value or credit for sequestration through agri-

cultural measures, including soil management. Currently, the

global state of carbon markets is fragmented and the role of

agriculture in these markets is still limited. This and several
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institutional and behavioural barriers have been identified as

part of the basic challenge to find ways to circumvent a ba-

sic market failure that prevents the link between the supply

of service and the growing global demand for cost-effective

sequestration. The supply of this good is largely determined

by the role of millions of private agents taking individual de-

cisions about how to manage their land and by extension the

carbon in their soil. Markets are slow to evolve because the

transaction costs of dealing with many suppliers are high.

Therefore the demand for the service has to be transacted

by other means, including the use of voluntary carbon cred-

its and the development of agri-environment schemes where

government is the principal source of demand.

Soil carbon sequestration may not always be cost-

effective. In some locations, the biophysical effectiveness of

measures may be low and the cost of their implementation

high. In other locations the converse will be the case and soil

measures may be cost saving and offer other environmen-

tal and social co-benefits. Overall, an economic perspective

provides part of the motive for soil carbon stewardship. Ulti-

mately, neither examination through economics nor soil car-

bon in isolation is the right focus to take on the management

of a critical capital asset, without which all life would essen-

tially be compromised.
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