93 research outputs found
Towards accurate monitoring of water content in woody tissue across tropical forests and other biomes
Forest ecosystems face increasing drought exposure due to climate change, necessitating accurate measurements of vegetation water content to assess drought stress and tree mortality risks. Although Frequency Domain Reflectometry offers a viable method for monitoring stem water content by measuring dielectric permittivity, challenges arise from uncertainties in sensor calibration linked to wood properties and species variability, impeding its wider usage. We sampled tropical forest trees and palms in eastern Amazônia to evaluate how sensor output differences are controlled by wood density, temperature and taxonomic identity. Three individuals per species were felled and cut into segments within a diverse dataset comprising five dicotyledonous tree and three monocotyledonous palm species on a wide range of wood densities. Water content was estimated gravimetrically for each segment using a temporally explicit wet-up/dry-down approach and the relationship with the dielectric permittivity was examined. Woody tissue density had no significant impact on the calibration, but species identity and temperature significantly affected sensor readings. The temperature artefact was quantitatively important at large temperature differences, which may have led to significant bias of daily and seasonal water content dynamics in previous studies. We established the first tropical tree and palm calibration equation which performed well for estimating water content. Notably, we demonstrated that the sensitivity remained consistent across species, enabling the creation of a simplified one-slope calibration for accurate, species-independent measurements of relative water content. Our one-slope calibration serves as a general, species-independent standard calibration for assessing relative water content in woody tissue, offering a valuable tool for quantifying drought responses and stress in trees and forest ecosystems
Plant traits controlling growth change in response to a drier climate
This is the final version. Available on open access from Wiley via the DOI in this recordPlant traits are increasingly being used to improve prediction of plant function, including plant demography. However, the capability of plant traits to predict demographic rates remains uncertain, particularly in the context of trees experiencing a changing climate. Here we present data combining 17 plant traits associated with plant structure, metabolism and hydraulic status, with measurements of long-term mean, maximum and relative growth rates for 176 trees from the world’s longest running tropical forest drought experiment. We demonstrate that plant traits can predict mean annual tree growth rates with moderate explanatory power. However, only combinations of traits associated more directly with plant functional processes, rather than more commonly employed traits like wood density or leaf mass per area, yield the power to predict growth. Critically, we observe a shift from growth being controlled by traits related to carbon cycling (assimilation and respiration) in well-watered trees, to traits relating to plant hydraulic stress in drought-stressed trees. We also demonstrate that even with a very comprehensive set of plant traits and growth data on large numbers of tropical trees, considerable uncertainty remains in directly interpreting the mechanisms through which traits influence performance in tropical forests.Conselho Nacional de Desenvolvimento Científico e TecnológicoNatural Environment Research Council (NERC)Australian Research Council (ARC)European Union FP7Fundação de Amparo à Pesquisa do Estado de São Paul
The response of carbon assimilation and storage to long‐term drought in tropical trees is dependent on light availability
Whether tropical trees acclimate to long‐term drought stress remains unclear. This uncertainty is amplified if drought stress is accompanied by changes in other drivers such as the increases in canopy light exposure that might be induced by tree mortality or other disturbances. Photosynthetic capacity, leaf respiration, non‐structural carbohydrate (NSC) storage and stomatal conductance were measured on 162 trees at the world's longest running (15 years) tropical forest drought experiment. We test whether surviving trees have altered strategies for carbon storage and carbon use in the drier and elevated light conditions present following drought‐related tree mortality. Relative to control trees, the surviving trees experiencing the drought treatment showed functional responses including: (a) moderately reduced photosynthetic capacity; (b) increased total leaf NSC; and (c) a switch from starch to soluble sugars as the main store of branch NSC. This contrasts with earlier findings at this experiment of no change in photosynthetic capacity or NSC storage. The changes detected here only occurred in the subset of drought‐stressed trees with canopies exposed to high radiation and were absent in trees with less‐exposed canopies and also in the community average. In contrast to previous results acquired through less intensive species sampling from this experiment, we also observe no species‐average drought‐induced change in leaf respiration. Our results suggest that long‐term responses to drought stress are strongly influenced by a tree's full‐canopy light environment and therefore that disturbance‐induced changes in stand density and dynamics are likely to substantially impact tropical forest responses to climate change. We also demonstrate that, while challenging, intensive sampling is essential in tropical forests to avoid sampling biases caused by limited taxonomic coverage.Publicado online em 29 set. 2020
Anatomical Organization of Urocortin 3-Synthesizing Neurons and Immunoreactive Terminals in the Central Nervous System of Non-Human Primates [Sapajus spp.]
Urocortin 3 (UCN3) is a neuropeptide member of the corticotropin-releasing factor (CRF) peptide family that acts as a selective endogenous ligand for the CRF, subtype 2 (CRF2) receptor. Immunohistochemistry and in situ hybridization data from rodents revealed UCN3-containing neurons in discrete regions of the central nervous system (CNS), such as the medial preoptic nucleus, the rostral perifornical area (PFA), the medial nucleus of the amygdala and the superior paraolivary nucleus. UCN3-immunoreactive (UCN3-ir) terminals are distributed throughout regions that mostly overlap with regions of CRF2 messenger RNA (mRNA) expression. Currently, no similar mapping exists for non-human primates. To better understand the role of this neuropeptide, we aimed to study the UCN3 distribution in the brains of New World monkeys of the Sapajus genus. To this end, we analyzed the gene and peptide sequences in these animals and performed immunohistochemistry and in situ hybridization to identify UCN3 synthesis sites and to determine the distribution of UCN3-ir terminals. The sequencing of the Sapajus spp. UCN3-coding gene revealed 88% and 65% identity to the human and rat counterparts, respectively. Additionally, using a probe generated from monkey cDNA and an antiserum raised against human UCN3, we found that labeled cells are mainly located in the hypothalamic and limbic regions. UCN3-ir axons and terminals are primarily distributed in the ventromedial hypothalamic nucleus (VMH) and the lateral septal nucleus (LS). Our results demonstrate that UCN3-producing neurons in the CNS of monkeys are phylogenetically conserved compared to those of the rodent brain, that the distribution of fibers agrees with the distribution of CRF2 in other primates and that there is anatomical evidence for the participation of UCN3 in neuroendocrine control in primates
Drought stress and tree size determine stem CO2 efflux in a tropical forest
CO2 efflux from stems (CO2_stem) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world's longest running tropical forest drought experiment site. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10–40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees > 20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, > 40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem, due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand‐scale future estimates of changes in stem CO2 emissions remain highly uncertain.This work is a product of a UK NERC independent fellowship grant NE/N014022/1 to L.R., a UK NERC grant NE/J011002/1 to P.M. and M.M., CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to A.C.L.d.C., an ARC
grant FT110100457 to P.M. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU FP5-Carbonsink and EU FP7-Amazalert to P.M
Drought stress and tree size determine stem CO2 efflux in tropical forests
This is the author accepted manuscript. The final version is available from Wiley for New Phytologist Trust via the DOI in this record.1. CO2 efflux from stems (CO2_stem) accounts for a substantial fraction of tropical forest gross primary productivity, but the climate sensitivity of this flux remains poorly understood.
2. We present a study of tropical forest CO2_stem from 215 trees across wet and dry seasons, at the world’s longest running tropical forest drought experiment site.
3. We show a 27% increase in wet season CO2_stem in the droughted forest relative to a control forest. This was driven by increasing CO2_stem in trees 10-40 cm diameter. Furthermore, we show that drought increases the proportion of maintenance to growth respiration in trees >20 cm diameter, including large increases in maintenance respiration in the largest droughted trees, >40 cm diameter. However, we found no clear taxonomic influence on CO2_stem and were unable to accurately predict how drought sensitivity altered ecosystem scale CO2_stem, due to substantial uncertainty introduced by contrasting methods previously employed to scale CO2_stem fluxes.
4. Our findings indicate that under future scenarios of elevated drought, increases in CO2_stem may augment carbon losses, weakening or potentially reversing the tropical forest carbon sink. However, due to substantial uncertainties in scaling CO2_stem fluxes, stand-scale future estimates of changes in stem CO2 emissions remain highly uncertain.This work is a product of a UK NERC independent fellowship grant NE/N014022/1 to LR, a UK NERC grant NE/J011002/1 to PM and MM, CNPQ grant 457914/2013-0/MCTI/CNPq/FNDCT/LBA/ESECAFLOR to ACLD, an ARC grant FT110100457 to PM. It was previously supported by NERC NER/A/S/2002/00487, NERC GR3/11706, EU FP5-Carbonsink and EU FP7-Amazalert to PM. LR would also like to acknowledge the support of Dr. Robert Clement, University of Edinburgh and Dr. Timothy Hill, University of Exeter, alongside the contribution of three anonymous reviewers
Basin-wide variation in tree hydraulic safety margins predicts the carbon balance of Amazon forests
Funding: Data collection was largely funded by the UK Natural Environment Research Council (NERC) project TREMOR (NE/N004655/1) to D.G., E.G. and O.P., with further funds from Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001) to J.V.T. and a University of Leeds Climate Research Bursary Fund to J.V.T. D.G., E.G. and O.P. acknowledge further support from a NERC-funded consortium award (ARBOLES, NE/S011811/1). This paper is an outcome of J.V.T.’s doctoral thesis, which was sponsored by CAPES (GDE 99999.001293/2015-00). J.V.T. was previously supported by the NERC-funded ARBOLES project (NE/S011811/1) and is supported at present by the Swedish Research Council Vetenskapsrådet (grant no. 2019-03758 to R.M.). E.G., O.P. and D.G. acknowledge support from NERC-funded BIORED grant (NE/N012542/1). O.P. acknowledges support from an ERC Advanced Grant and a Royal Society Wolfson Research Merit Award. R.S.O. was supported by a CNPq productivity scholarship, the São Paulo Research Foundation (FAPESP-Microsoft 11/52072-0) and the US Department of Energy, project GoAmazon (FAPESP 2013/50531-2). M.M. acknowledges support from MINECO FUN2FUN (CGL2013-46808-R) and DRESS (CGL2017-89149-C2-1-R). C.S.-M., F.B.V. and P.R.L.B. were financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES, finance code 001). C.S.-M. received a scholarship from the Brazilian National Council for Scientific and Technological Development (CNPq 140353/2017-8) and CAPES (science without borders 88881.135316/2016-01). Y.M. acknowledges the Gordon and Betty Moore Foundation and ERC Advanced Investigator Grant (GEM-TRAITS, 321131) for supporting the Global Ecosystems Monitoring (GEM) network (gem.tropicalforests.ox.ac.uk), within which some of the field sites (KEN, TAM and ALP) are nested. The authors thank Brazil–USA Collaborative Research GoAmazon DOE-FAPESP-FAPEAM (FAPESP 2013/50533-5 to L.A.) and National Science Foundation (award DEB-1753973 to L. Alves). They thank Serrapilheira Serra-1709-18983 (to M.H.) and CNPq-PELD/POPA-441443/2016-8 (to L.G.) (P.I. Albertina Lima). They thank all the colleagues and grants mentioned elsewhere [8,36] that established, identified and measured the Amazon forest plots in the RAINFOR network analysed here. The authors particularly thank J. Lyod, S. Almeida, F. Brown, B. Vicenti, N. Silva and L. Alves. This work is an outcome approved Research Project no. 19 from ForestPlots.net, a collaborative initiative developed at the University of Leeds that unites researchers and the monitoring of their permanent plots from the world’s tropical forests [61]. The authros thank A. Levesley, K. Melgaço Ladvocat and G. Pickavance for ForestPlots.net management. They thank Y. Wang and J. Baker, respectively, for their help with the map and with the climatic data. The authors acknowledge the invaluable help of M. Brum for kindly providing the comparison of vulnerability curves based on PAD and on PLC shown in this manuscript. They thank J. Martinez-Vilalta for his comments on an early version of this manuscript. The authors also thank V. Hilares and the Asociación para la Investigación y Desarrollo Integral (AIDER, Puerto Maldonado, Peru); V. Saldaña and Instituto de Investigaciones de la Amazonía Peruana (IIAP) for local field campaign support in Peru; E. Chavez and Noel Kempff Natural History Museum for local field campaign support in Bolivia; ICMBio, INPA/NAPPA/LBA COOMFLONA (Cooperativa mista da Flona Tapajós) and T. I. Bragança-Marituba for the research support.Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, Ψ50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters Ψ50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both Ψ50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.Publisher PDFPeer reviewe
- …