78 research outputs found
Contourite depositional system after the exit of a strait: Case study from the late Miocene South Rifian Corridor, Morocco
Idealized facies of bottom current deposits (contourites) have been established for fine-grained contourite drifts in modern deep-marine sedimentary environments. Their equivalent facies in the ancient record however are only scarcely recognized due to the weathered nature of most fine-grained deposits in outcrop. Facies related to the erosional elements (i.e. contourite channels) of contourite depositional systems have not yet been properly established and related deposits in outcrop appear non-existent. To better understand the sedimentary facies and facies sequences of contourites, the upper Miocene contourite depositional systems of the South Rifian Corridor (Morocco) is investigated. This contourite depositional system formed by the dense palaeo-Mediterranean Outflow Water. Foraminifera assemblages were used for age-constraints (7.51 to 7.35 Ma) and to determine the continental slope depositional domains. Nine sedimentary facies have been recognized based on lithology, grain-size, sedimentary structures and biogenic structures. These facies were subsequently grouped into five facies associations related to the main interpreted depositional processes (hemipelagic settling, contour currents and gravity flows). The vertical sedimentary facies succession records the tectonically induced, southward migration of the contourite depositional systems and the intermittent behaviour of the palaeo-Mediterranean Outflow Water, which is mainly driven by precession and millennial-scale climate variations. Tides substantially modulated the palaeo-Mediterranean Outflow Water on a sub-annual scale. This work shows exceptional examples of muddy and sandy contourite deposits in outcrop by which a facies distribution model from the proximal continental slope, the contourite channel to its adjacent contourite drift, is proposed. This model serves as a reference for contourite recognition both in modern environments and the ancient record. Furthermore, by establishing the hydrodynamics of overflow behaviour a framework is provided that improves process-based interpretation of deep-water bottom current deposits
Insights into mammalian TE diversity through the curation of 248 genome assemblies
[INTRODUCTION] An estimated 160 million years have passed since the first placental mammals evolved. These eutherians are categorized into 19 orders consisting of nearly 4000 extant species, with ~70% being bats or rodents. Broad, in-depth, and comparative genomic studies across Eutheria have previously been unachievable because of the lack of genomic resources. The collaboration of the Zoonomia Consortium made available hundreds of high-quality genome assemblies for comparative analysis. Our focus within the consortium was to investigate the evolution of transposable elements (TEs) among placental mammals. Using these data, we identified previously known TEs, described previously unknown TEs, and analyzed the TE distribution among multiple taxonomic levels.[RATIONALE] The emergence of accurate and affordable sequencing technology has propelled efforts to sequence increasingly more nonmodel mammalian genomes in the past decade. Most of these efforts have traditionally focused on genic regions searching for patterns of selection or variation in gene regulation. The common trend of ignoring or trivializing TE annotation with newly published genomes has resulted in severe lag of TE analyses, leading to extensive undiscovered TE variation. This oversight has neglected an important source of evolution because the accumulation of TEs is attributable to drastic alterations in genome architecture, including insertions, deletions, duplications, translocations, and inversions. Our approach to the Zoonomia dataset was to provide future inquirers accurate and meticulous TE curations and to describe taxonomic variation among eutherians.[RESULTS] We annotated the TE content of 248 mammalian genome assemblies, which yielded a library of 25,676 consensus TE sequences, 8263 of which were previously unidentified TE sequences (available at https://dfam.org). We affirmed that the largest component of a typical mammalian genome is comprised of TEs (average 45.6%). Of the 248 assemblies, the lowest genomic percentage of TEs was found in the star-nosed mole (27.6%), and the largest percentage was seen in the aardvark (74.5%), whose increase in TE accumulation drove a corresponding increase in genome sizeâa correlation we observed across Eutheria. The overall genomic proportions of recently accumulated TEs were roughly similar across most mammals in the dataset, with a few notable exceptions (see the figure). Diversity of recently accumulated TEs is highest among multiple families of bats, mostly driven by substantial DNA transposon activity. Our data also exhibit an increase of recently accumulated DNA transposons among carnivore lineages over their herbivorous counterparts, which suggests that diet may play a role in determining the genomic content of TEs.[CONCLUSION] The copious TE data provided in this work emanated from the largest comprehensive TE curation effort to date. Considering the wide-ranging effects that TEs impose on genomic architecture, these data are an important resource for future inquiries into mammalian genomics and evolution and suggest avenues for continued study of these important yet understudied genomic denizens.This project was partially supported by NSF grant DEB 1838283 (D.D.M.-S. and D.A.R.), NSF grant IOS 2032006 (D.D.M.-S. and D.A.R.), National Institutes of Health (NIH) grant R01HG002939 (J.M.S., R.H., A.F.A.S., and J.Ros.), NIH grant U24HG010136 (J.M.S., R.H., A.F.A.S., and J.Ros.), NSF grant DEB 1838273 (L.M.D.), NSF grant DGE 1633299 (L.M.D.), NIH grant NHGRI R01HG008742 (Zoonomia Consortium), and a Swedish Research Council Distinguished Professor Award (Zoonomia Consortium).Peer reviewe
Six-Coordinate Nitrito and Nitrato Complexes of Manganese Porphyrin
Reaction of small increments of NO2 gas with sublimed amorphous layers of Mn(II)(TPP) (TPP = meso-tetra-phenylporphyrinato dianion) in a vacuum cryostat leads to formation of the 5-coordinate monodentate nitrato complex Mn(III)(TPP)(η(1)-ONO2) (II). This transformation proceeds through the two distinct steps with initial formation of the five coordinate O-nitrito complex Mn(III)(TPP)(η(1)-ONO) (I) as demonstrated by the electronic absorption spectra and by FTIR spectra using differently labeled nitrogen dioxide. A plausible mechanism for the second stage of reaction is offered based on the spectral changes observed upon subsequent interaction of (15)NO2 and NO2 with the layered Mn(TPP). Low-temperature interaction of I and II with the vapors of various ligands L (L = O-, S-, and N-donors) leads to formation of the 6-coordinate O-nitrito Mn(III)(TPP)(L)(η(1)-ONO) and monodentate nitrato Mn(III)(TPP)(L)(η(1)-ONO2) complexes, respectively. Formation of the 6-coordinate O-nitrito complex is accompanied by the shifts of the Îœ(NâO) band to lower frequency and of the Îœ(N-O) band to higher frequency. The frequency difference between these bands ÎÎœ = Îœ(NâO) - Îœ(N-O) is a function of L and is smaller for the stronger bases. Reaction of excess NH3 with I leads to formation of Mn(TPP)(NH3)(η(1)-ONO) and of the cation [Mn(TPP)(NH3)2](+) plus ionic nitrite. The nitrito complexes are relatively unstable, but several of the nitrato species can be observed in the solid state at room temperature. For example, the tetrahydrofuran complex Mn(TPP)(THF)(η(1)-ONO2) is stable in the presence of THF vapors (âŒ5 mm), but it loses this ligand upon high vacuum pumping at RT. When L = dimethylsulfide (DMS), the nitrato complex is stable only to âŒ-30 °C. Reactions of II with the N-donor ligands NH3, pyridine, or 1-methylimidazole are more complex. With these ligands, the nitrato complexes Mn(III)(TPP)(L)(η(1)-ONO2) and the cationic complexes [Mn(TPP)(L)2](+) coexist in the layer at room temperature, the latter formed as a result of NO3(-) displacement when L is in excess
Determination of fog-droplet deposition velocity from a simple weighing method
International audienceFog water deposition can represent an important part of the atmospheric water, nutrient and pollutant inputs in specific areas such as mountainous or coastal regions (Shimadera et al., 2011). In order to determine the potential of fog water deposition on plants, a field experiment has been performed in the northeast of France to determine fog droplet deposition velocity on different types of plants. The main objective is to improve deposition models by enabling them to accurately account for water inputs from fog or low clouds at ground level. The flux of deposited fog water was estimated by exposing plants to fog and weighing them with a precision balance. Contrary to other flux measurement methods, the weighing method is simple to set up. Three plant types (small conifers, grass and cabbages) plus bare soil were used as impaction and deposition surfaces. A Particulate Volume Monitor (PVM-100) provided the liquid water content (LWC) to calculate fog droplet deposition velocities, and a Fog Monitor (FM-120), the characterization of the droplet size distribution. Two fog events with different features (visibility, LWC and droplet number) were compared with regard to deposition velocity. When wind speed was below 4 m sâ1, mean fog droplet deposition velocities ranged from less than 2.2 cm sâ1 on bare soil to 40 cm sâ1 on cypress. Thus, the impaction of fog droplets can be an important part of fog water deposition on plants. © Taiwan Association for Aerosol Research
Continuous deep brain stimulation of the nucleus accumbens reduces food intake but does not affect body weight in mice fed a high-fat diet
Abstract Obesity is an enormous health problem, and many patients do not respond to any of the available therapies. Deep brain stimulation (DBS) is currently investigated as a potential treatment for morbid obesity. In this study, we tested the hypothesis that high-frequency DBS targeting the nucleus accumbens (NAc) shell region reduces food intake and weight gain in mice fed a high-fat diet. We implanted male C57BL/6J mice with bilateral electrodes and a head-mounted microstimulator enabling continuous stimulation for up to 5Â weeks. In successfully operated animals (nâ=â9 per group, high-frequency vs. sham stimulation), we investigated immediate and long-term stimulation effects on metabolic and behavioral phenotypes. Here we show that stimulation acutely induced a transient reduction in energy expenditure and locomotor activity but did not significantly affect spontaneous food intake, social interaction, anxiety or exploratory behaviors. In contrast, continuous stimulation over 5Â weeks led to a decrease in food intake and thigmotaxis (the tendency to stay near walls in an open lit arena). However, chronic stimulation did not substantially change weight gain in mice fed a high-fat diet. Our results do not support the use of continuous high-frequency NAc shell DBS as a treatment for obesity. However, DBS can alter obesity-related parameters with differing short and long-term effects. Therefore, future research should employ time and context-sensitive experimental designs to assess the potential of DBS for clinical translation in this area
Small molecule-mediated stabilization of vesicle-associated helical Alpha-synuclein inhibits patogenic misfolding and aggregation
α-synuclein is an abundant presynaptic protein that is important for regulation of synaptic vesicle trafficking, and whose misfolding plays a key role in Parkinsonâs disease. While α-synuclein is disordered in solution, it folds into a helical conformation when bound to synaptic vesicles. Stabilization of helical, folded α-synuclein might therefore interfere with α-synuclein-induced neurotoxicity. Here we show that several small molecules, which delay aggregation of α-synuclein in solution, including the Parkinsonâs disease drug selegiline, fail to interfere with misfolding of vesicle-bound α-synuclein. In contrast, the porphyrin phtalocyanine tetrasulfonate directly binds to vesicle-bound α-synuclein, stabilizes its helical conformation and thereby delays pathogenic misfolding and aggregation. Our study suggests that small-molecule-mediated stabilization of helical vesicle-bound α-synuclein opens new possibilities to target Parkinsonâs disease and related synucleinopathiesFil: Fonseca Ornelas, Luis. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Eisbach, Sybille E.. University Medicine; AlemaniaFil: Paulat, Maria. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Giller, Karin. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Fernandez, Claudio Oscar. Universidad Nacional de Rosario; Argentina. Instituto de Investigaciones para el Descubrimiento de Farmacos de Rosario; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Outeiro, Tiago F. University Medicine; Alemania. University Medical Center; AlemaniaFil: Becker, Stefan. Max Planck Institute for Biophysical Chemistry; AlemaniaFil: Zweckstetter, Markus. Max Planck Institute for Biophysical Chemistry; Alemania. University Medical Center; Alemania. German Center for Neurodegenerative Diseases; Alemani
- âŠ