593 research outputs found

    Ensuring the Health Care Needs of Women: A Checklist for Health Exchanges

    Get PDF
    To inform the development of the state health insurance Exchanges under the Affordable Care Act, this checklist identifies key coverage, affordability and access issues that are important for women. Based on lessons learned from women’s health research and the Massachusetts experience, the checklist considers essential health benefits, implementation of no-cost preventive services including contraception, provider networks and affordability, outreach and enrollment efforts, and the importance of including gender and other demographic characteristics in data collection and reporting standards. It was jointly authored by policy experts at the Kaiser Family Foundation, The Connors Center for Women’s Health and Gender Biology at the Brigham and Women’s Hospital and the Jacobs Institute of Women’s Health at The George Washington University

    High Pressure Processing of Dairy Foods

    Get PDF
    End of Project ReportThe term High Pressure Processing (HPP) is used to describe the technology whereby products are exposed to very high pressures in the region of 50 - 800 MPa (500 - 8000 Atmospheres). The potential application of HPP in the food industry has gained popularity in recent years, due to developments in the construction of HPP equipment which makes the technology more affordable. Applying HPP to food products results in modifications to interactions between individual components, rates of enzymatic reactions and inactivation of micro-organisms. The first commercial HPP products appeared on the market in 1991 in Japan, where HPP is now being used commercially for products such as jams, sauces, fruit juices, rice cakes and desserts. The pioneering research into the application of HPP to milk dates back to the end of the 19th century. Application of HPP to milk has been shown to modify its gel forming characteristics as well as reducing its microbial load. HPP offers the potential to induce similar effects to those generated by heat on milk protein. Recent reports have also indicated that HPP could accelerate the ripening of cheese. Much of the Irish cheese industry is based on the production of Cheddar cheese, the ripening time for which can vary from 4 - 12 months or more, depending on grade. A substantial portion of the cost associated with Cheddar manufacture is therefore attributed to storage under controlled conditions during ripening. Thus, any technology which may accelerate the ripening of Cheddar cheese while maintaining a balanced flavour and texture is of major economic significance. While food safety is a dominant concern, consumers are increasingly demanding foods that maintain their natural appearance and flavour, while free of chemical preservatives. HPP offers the food industry the possibility of achieving these twin goals as this technology can lead to reduced microbial loads without detrimentally effecting the nutritional or sensory qualities of the product. The development of food ingredients with novel functional properties offers the dairy industry an opportunity to revitalise existing markets and develop new ones. HPP can lead to modifications in the structure of milk components, in particular protein, which may provide interesting possibilities for the development of high value nutritional and functional ingredients. Hence these projects set out to investigate the potential of HPP in the dairy industry and to identify products and processes to which it could be applied.Department of Agriculture, Food and the Marin

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    Measurement of antiproton production from antihyperon decays in pHe collisions at √sNN=110GeV

    Get PDF
    The interpretation of cosmic antiproton flux measurements from space-borne experiments is currently limited by the knowledge of the antiproton production cross-section in collisions between primary cosmic rays and the interstellar medium. Using collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest in the proximity of the interaction region of the LHCb experiment, the ratio of antiprotons originating from antihyperon decays to prompt production is measured for antiproton momenta between 12 and 110GeV\!/c . The dominant antihyperon contribution, namely Λ¯ → p¯ π+ decays from promptly produced Λ¯ particles, is also exclusively measured. The results complement the measurement of prompt antiproton production obtained from the same data sample. At the energy scale of this measurement, the antihyperon contributions to antiproton production are observed to be significantly larger than predictions of commonly used hadronic production models

    Observation of the doubly charmed baryon decay Ξcc++→Ξc′+π+

    Get PDF
    The Ξcc++→Ξc′+π+ decay is observed using proton-proton collisions collected by the LHCb experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 5.4 fb−1. The Ξcc++→Ξc′+π+ decay is reconstructed partially, where the photon from the Ξc′+→Ξc+γ decay is not reconstructed and the pK−π+ final state of the Ξc+ baryon is employed. The Ξcc++→Ξc′+π+branching fraction relative to that of the Ξcc++→Ξc+π+ decay is measured to be 1.41 ± 0.17 ± 0.10, where the first uncertainty is statistical and the second systematic. [Figure not available: see fulltext.

    Study of charmonium and charmonium-like contributions in B+ → J/ψηK+ decays

    Get PDF
    A study of B+→ J/ψηK+ decays, followed by J/ψ → μ+μ− and η → γγ, is performed using a dataset collected with the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV, corresponding to an integrated luminosity of 9 fb−1. The J/ψη mass spectrum is investigated for contributions from charmonia and charmonium-like states. Evidence is found for the B+→ (ψ2(3823) → J/ψη)K+ and B+→ (ψ(4040) → J/ψη)K+ decays with significance of 3.4 and 4.7 standard deviations, respectively. This constitutes the first evidence for the ψ2(3823) → J/ψη decay

    Measurement of the photon polarization in ΛbΛγ\Lambda_b \to \Lambda \gamma decays

    Get PDF
    The photon polarization in bsγb \to s \gamma transitions is measured for the first time in radiative b-baryon decays exploiting the unique spin structure of ΛbΛγ\Lambda_b \to \Lambda \gamma decays. A data sample corresponding to an integrated luminosity of 6  fb16\;fb^{-1} collected by the LHCb experiment in pppp collisions at a center-of-mass energy of 13  TeV13\;TeV is used. The photon polarization is measured to be αγ=0.820.260.13+0.17+0.04\alpha_{\gamma}= 0.82^{\,+\,0.17\,+\,0.04}_{\,-\,0.26\,-\,0.13}, where the first uncertainty is statistical and the second systematic. This result is in agreement with the Standard Model prediction and previous measurements in b-meson decays. Charge-parity breaking effects are studied for the first time in this observable and found to be consistent with CPCP symmetry.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2021-030.html (LHCb public pages
    corecore