26 research outputs found

    Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis

    Get PDF
    Alemtuzumab is a monoclonal antibody that targets cell surface CD52 and is effective in depleting lymphocytes by cytolytic effects in vivo. Although the cytolytic effects of alemtuzumab are dependent on the density of CD52 antigen on cells, there is scant information regarding the expression levels of CD52 on different cell types. In this study, CD52 expression was assessed on phenotypically distinct subsets of lymphoid and myeloid cells in peripheral blood mononuclear cells (PBMCs) from normal donors. Results demonstrate that subsets of PBMCs express differing levels of CD52. Quantitative analysis showed that memory B cells and myeloid dendritic cells (mDCs) display the highest number while natural killer (NK) cells, plasmacytoid dendritic cells (pDCs) and basophils have the lowest number of CD52 molecules per cell amongst lymphoid and myeloid cell populations respectively. Results of complement dependent cytolysis (CDC) studies indicated that alemtuzumab mediated profound cytolytic effects on B and T cells with minimal effect on NK cells, basophils and pDCs, correlating with the density of CD52 on these cells. Interestingly, despite high CD52 levels, mDCs and monocytes were less susceptible to alemtuzumab-mediated CDC indicating that antigen density alone does not define susceptibility. Additional studies indicated that higher expression levels of complement inhibitory proteins (CIPs) on these cells partially contributes to their resistance to alemtuzumab mediated CDC. These results indicate that alemtuzumab is most effective in depleting cells of the adaptive immune system while leaving innate immune cells relatively intact

    Using fish models to investigate the links between microbiome and social behaviour: the next step for translational microbiome research?

    Get PDF
    Recent research has revealed surprisingly important connections between animals’ microbiome and social behaviour. Social interactions can affect the composition and function of the microbiome; conversely, the microbiome affects social communication by influencing the hosts’ central nervous system and peripheral chemical communication. These discoveries set the stage for novel research focusing on the evolution and physiology of animal social behaviour in relation to microbial transmission strategies. Here, we discuss the emerging roles of teleost fish models and their potential for advancing research fields, linked to sociality and microbial regulation. We argue that fish models, such as the zebrafish (Danio rerio, Cyprinidae), sticklebacks (‎Gasterosteidae), guppies (Poeciliidae) and cleaner–client dyads (e.g., obligate cleaner fish from the Labridae and Gobiidae families and their visiting clientele), will provide valuable insights into the roles of microbiome in shaping social behaviour and vice versa, while also being of direct relevance to the food and ornamental fish trades. The diversity of fish behaviour warrants more interdisciplinary research, including microbiome studies, which should have a strong ecological (field‐derived) approach, together with laboratory‐based cognitive and neurobiological experimentation. The implications of such integrated approaches may be of translational relevance, opening new avenues for future investigation using fish models

    Prophylactic radiotherapy for the prevention of procedure-tract metastases after surgical and large-bore pleural procedures in malignant pleural mesothelioma (SMART): a multicentre, open-label, phase 3, randomised controlled trial.

    Get PDF
    The use of prophylactic radiotherapy to prevent procedure-tract metastases (PTMs) in malignant pleural mesothelioma remains controversial, and clinical practice varies worldwide. We aimed to compare prophylactic radiotherapy with deferred radiotherapy (given only when a PTM developed) in a suitably powered trial.This article is freely available via Open Access. Click on the 'Additional Link' above to access the full-text via the publisher's site.Published (Open Access

    MASTREE+: Time-series of plant reproductive effort from six continents.

    Get PDF
    Significant gaps remain in understanding the response of plant reproduction to environmental change. This is partly because measuring reproduction in long-lived plants requires direct observation over many years and such datasets have rarely been made publicly available. Here we introduce MASTREE+, a data set that collates reproductive time-series data from across the globe and makes these data freely available to the community. MASTREE+ includes 73,828 georeferenced observations of annual reproduction (e.g. seed and fruit counts) in perennial plant populations worldwide. These observations consist of 5971 population-level time-series from 974 species in 66 countries. The mean and median time-series length is 12.4 and 10 years respectively, and the data set includes 1122 series that extend over at least two decades (≄20 years of observations). For a subset of well-studied species, MASTREE+ includes extensive replication of time-series across geographical and climatic gradients. Here we describe the open-access data set, available as a.csv file, and we introduce an associated web-based app for data exploration. MASTREE+ will provide the basis for improved understanding of the response of long-lived plant reproduction to environmental change. Additionally, MASTREE+ will enable investigation of the ecology and evolution of reproductive strategies in perennial plants, and the role of plant reproduction as a driver of ecosystem dynamics

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Phenotypic characterization of lymphoid and myeloid subsets.

    No full text
    <p>Representative polychromatic flow cytometric analysis of lymphoid (A) and myeloid (B) subsets from PBMCs. Mem B (Memory B-cells), CM (Central memory), EM (Effector memory), NK (Natural killer), mDCs (Myeloid Dendritic cells), pDCs (Plasmacytoid dendritic cells).The phenotype of each PBMC subset is detailed in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0039416#pone-0039416-t001" target="_blank">Table 1</a>.</p

    Calibration of Simply Quantum cellular microspheres with alemtuzumab.

    No full text
    <p>Uniformly sized microspheres coated with different numbers (shown above each histogram) of anti-human Fc molecules defined as antibody binding capacity (ABC) are incubated with a saturating concentration of FITC-conjugated alemtuzumab (5 ”g/ml). The beads were analyzed by flow cytometry on an LSR-II instrument and the median fluorescence intensity (MFI) values (shown next to each histogram) were plotted against the ABC units (shown on top of each histogram) to generate a standard calibration curve (not shown). The cells were labeled with alemtuzumab-FITC in the same manner as the beads and the MFI of CD52 expression on each cell subset was used to quantify absolute CD52 levels in ABC units or number of CD52 molecules per cell using the calibration curve.</p
    corecore