51 research outputs found

    Bullying and harassment and work-related stressors: Evidence from British small and medium enterprises

    Get PDF
    This article examines the relationship between work-related stressors and bullying and harassment in British small and medium sized enterprises (SMEs). Using representative data from a national survey on employment rights and experiences (Fair Treatment at Work) this research identifies that bullying and harassment is just as prevalent in British SMEs as in larger organizations. Drawing upon the Management Standards of the Health and Safety Executive a number of significant relationships with bullying and harassment are established. Work demands placed upon employees are positively related to bullying and harassment behaviours, whilst autonomy, manager support, peer support, and clarity of role are negatively associated with such behaviours. The study considers implications for human resource practices in SMEs and the risks of informal attitudes to these work-related stressors in contemporary workplaces are discussed

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Whisking-Related Changes in Neuronal Firing and Membrane Potential Dynamics in the Somatosensory Thalamus of Awake Mice

    Get PDF
    The thalamus transmits sensory information to the neocortex and receives neocortical, subcortical, and neuromodulatory inputs. Despite its obvious importance, surprisingly little is known about thalamic function in awake animals. Here, using intracellular and extracellular recordings in awake head-restrained mice, we investigate membrane potential dynamics and action potential firing in the two major thalamic nuclei related to whisker sensation, the ventral posterior medial nucleus (VPM) and the posterior medial group (Pom), which receive distinct inputs from brainstem and neocortex. We find heterogeneous state-dependent dynamics in both nuclei, with an overall increase in action potential firing during active states. Whisking increased putative lemniscal and corticothalamic excitatory inputs onto VPM and Pom neurons, respectively. A subpopulation of VPM cells fired spikes phase-locked to the whisking cycle during free whisking, and these cells may therefore signal whisker position. Our results suggest differential processing of whisking comparing thalamic nuclei at both sub- and supra-threshold levels

    Highly Dynamic Spatiotemporal Organization of Low-Frequency Activities During Behavioral States in the Mouse Cerebral Cortex

    No full text
    Although low-frequency (LF < 10 Hz) activities have been considered as a hallmark of nonrapid eye movement (NREM) sleep, several studies have recently reported LF activities in the membrane potential of cortical neurons from different areas in awake mice. However, little is known about the spatiotemporal organization of LF activities across cortical areas during wakefulness and to what extent it differs during NREM sleep. We have thus investigated the dynamics of LF activities across cortical areas in awake and sleeping mice using chronic simultaneous local field potential recordings. We found that LF activities had higher amplitude in somatosensory and motor areas during quiet wakefulness and decreased in most areas during active wakefulness, resulting in a global state change that was overall correlated with motor activity. However, we also observed transient desynchronization of cortical states between areas, indicating a more local state regulation. During NREM sleep, LF activities had higher amplitude in all areas but slow-wave activity was only poorly correlated across cortical areas. Despite a maximal amplitude during NREM sleep, the coherence of LF activities between areas that are not directly connected dropped from wakefulness to NREM sleep, potentially reflecting a breakdown of long-range cortical integration associated with loss of consciousness

    Reward-Based Learning Drives Rapid Sensory Signals in Medial Prefrontal Cortex and Dorsal Hippocampus Necessary for Goal-Directed Behavior

    No full text
    International audienceHighlights d Sensory-evoked responses in mPFC and dCA1 develop during learning d Sensory processing in mPFC and dCA1 is fast, beginning within 50 ms of stimulus d Sensory responses in mPFC and dCA1 correlate trial by trial with performance d mPFC and dCA1 are necessary for execution of a sensory detection tas

    The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders

    No full text
    Neurons contain abundant subsets of highly stable microtubules that resist depolymerizing conditions such as exposure to the cold. Stable microtubules are thought to be essential for neuronal development, maintenance, and function. Previous work has indicated an important role of the microtubule-associated protein STOP in the induction of microtubule cold stability. Here, we developed STOP null mice. These mice were devoid of cold-stable microtubules. In contrast to our expectations, STOP−/− mice had no detectable defects in brain anatomy but showed synaptic defects, with depleted synaptic vesicle pools and impaired synaptic plasticity, associated with severe behavioral disorders. A survey of the effects of psychotropic drugs on STOP−/− mice behavior showed a remarkable and specific effect of long-term administration of neuroleptics in alleviating these disorders. This study demonstrates that STOP is a major factor responsible for the intriguing stability properties of neuronal microtubules and is important for synaptic plasticity. Additionally, STOP−/− mice may yield a pertinent model for study of neuroleptics in illnesses such as schizophrenia, currently thought to result from synaptic defects
    • …
    corecore