824 research outputs found

    Coordination of KSHV Latent and Lytic Gene Control by CTCF-Cohesin Mediated Chromosome Conformation

    Get PDF
    Herpesvirus persistence requires a dynamic balance between latent and lytic cycle gene expression, but how this balance is maintained remains enigmatic. We have previously shown that the Kaposi's Sarcoma-Associated Herpesvirus (KSHV) major latency transcripts encoding LANA, vCyclin, vFLIP, v-miRNAs, and Kaposin are regulated, in part, by a chromatin organizing element that binds CTCF and cohesins. Using viral genome-wide chromatin conformation capture (3C) methods, we now show that KSHV latency control region is physically linked to the promoter regulatory region for ORF50, which encodes the KSHV immediate early protein RTA. Other linkages were also observed, including an interaction between the 5′ and 3′ end of the latency transcription cluster. Mutation of the CTCF-cohesin binding site reduced or eliminated the chromatin conformation linkages, and deregulated viral transcription and genome copy number control. siRNA depletion of CTCF or cohesin subunits also disrupted chromosomal linkages and deregulated viral latent and lytic gene transcription. Furthermore, the linkage between the latent and lytic control region was subject to cell cycle fluctuation and disrupted during lytic cycle reactivation, suggesting that these interactions are dynamic and regulatory. Our findings indicate that KSHV genomes are organized into chromatin loops mediated by CTCF and cohesin interactions, and that these inter-chromosomal linkages coordinate latent and lytic gene control

    Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1)

    Get PDF
    The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP-Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A consensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, suggesting that some of these sites are indirectly bound by EBNA1. EBNA1 also bound close to the transcriptional start sites of a large number of cellular genes, including HDAC3, CDC7, and MAP3K1, which we show are positively regulated by EBNA1. EBNA1 binding sites were enriched in some repetitive elements, especially LINE 1 retrotransposons, and had weak correlations with histone modifications and ORC binding. We conclude that EBNA1 can interact with a large number of cellular genes and chromosomal loci in latently infected cells, but that these sites are likely to represent a complex ensemble of direct and indirect EBNA1 binding sites

    Discovery of Selective Inhibitors Against EBNA1 via High Throughput In Silico Virtual Screening

    Get PDF
    Background: Epstein-Barr Virus (EBV) latent infection is associated with several human malignancies and is a causal agent of lymphoproliferative diseases during immunosuppression. While inhibitors of herpesvirus DNA polymerases, like gancyclovir, reduce EBV lytic cycle infection, these treatments have limited efficacy for treating latent infection. EBNA1 is an EBVencoded DNA-binding protein required for viral genome maintenance during latent infection. Methodology: Here, we report the identification of a new class of small molecules that inhibit EBNA1 DNA binding activity. These compounds were identified by virtual screening of 90,000 low molecular mass compounds using computational docking programs with the solved crystal structure of EBNA1. Four structurally related compounds were found to inhibit EBNA1-DNA binding in biochemical assays with purified EBNA1 protein. Compounds had a range of 20–100 mM inhibition of EBNA1 in fluorescence polarization assays and were further validated for inhibition using electrophoresis mobility shift assays. These compounds exhibited no significant inhibition of an unrelated DNA binding protein. Three of these compounds inhibited EBNA1 transcription activation function in cell-based assays and reduced EBV genome copy number when incubated with a Burkitt lymphoma cell line. Conclusions: These experiments provide a proof-of-principle that virtual screening can be used to identify specific inhibitor

    Subtelomeric CTCF and cohesin binding site organization using improved subtelomere assemblies and a novel annotation pipeline

    Get PDF
    Mapping genome-wide data to human subtelomeres has been problematic due to the incomplete assembly and challenges of low-copy repetitive DNA elements. Here, we provide updated human subtelomere sequence assemblies that were extended by filling telomere-adjacent gaps using clone-based resources. A bioinformatic pipeline incorporating multiread mapping for annotation of the updated assemblies using short-read data sets was developed and implemented. Annotation of subtelomeric sequence features as well as mapping of CTCF and cohesin binding sites using ChIP-seq data sets from multiple human cell types confirmed that CTCF and cohesin bind within 3 kb of the start of terminal repeat tracts at many, but not all, subtelomeres. CTCF and cohesin co-occupancy were also enriched near internal telomere-like sequence (ITS) islands and the nonterminal boundaries of subtelomere repeat elements (SREs) in transformed lymphoblastoid cell lines (LCLs) and human embryonic stem cell (ES) lines, but were not significantly enriched in the primary fibroblast IMR90 cell line. Subtelomeric CTCF and cohesin sites predicted by ChIP-seq using our bioinformatics pipeline (but not predicted when only uniquely mapping reads were considered) were consistently validated by ChIP-qPCR. The colocalized CTCF and cohesin sites in SRE regions are candidates for mediating long-range chromatin interactions in the transcript-rich SRE region. A public browser for the integrated display of short-read sequence–based annotations relative to key subtelomere features such as the start of each terminal repeat tract, SRE identity and organization, and subtelomeric gene models was established

    952-30 Left Ventricular Ejection Performance Improves Late After Aortic Valve Replacement in Patients with Aortic Stenosis and Reduced Ejection Fraction

    Get PDF
    To assess the time course and magnitude of change in left ventricular (LV) wall stress and ejection performance indices, 24 patients undergoing aortic valve replacement (AVR) for aortic stenosis were prospectively evaluated. Each patient underwent resting radionuclide angiography (RNA), echocardiography, and cardiac catheterization (high fidelity pressure) before AVR, then RNA and echocardiogram at one week and six months after AVR. Patients were stratified by preoperative ejection fraction (EF) into reduced EF (<50%) and normal EF (≥50%) groups.Pre-operatively, peak positive dp/dt was lower in the reduced EF group (1300 vs 1700mmHg/sec, p=0.035), and wall stress was elevated similarly in both groups (p=NS).Temporal Relationships of EF and Wall StressPre-op1 Week6 MosNormal EF (n=14)Mean Ejection Fraction (%)666468Mean Wall Stress (dyne/cm2×103)623444Reduced EF (n=10)Mean Ejection Fraction (%)383757Mean Wall Stress (dyne/cm2×103)785261Wall stress was reduced at one week post-operatively (p<0.005) in both groups. Ejection fraction remained depressed in the reduced EF group. By six months, however, EF had dramatically improved in the reduced EF group (p=0.002).ConclusionIn patients with LV dysfunction, EF remains low one week after AVR despite rectification of afterload mismatch. At six months, however, ejection performance improves. Therefore, when measured by ejection phase indices, the surgical benefit from AVR is not evident until late post-operatively

    Healthcare-associated outbreak of meticillin-resistant Staphylococcus aureus bacteraemia: role of a cryptic variant of an epidemic clone

    Get PDF
    BACKGROUND New strains of meticillin-resistant Staphylococcus aureus (MRSA) may be associated with changes in rates of disease or clinical presentation. Conventional typing techniques may not detect new clonal variants that underlie changes in epidemiology or clinical phenotype. AIM To investigate the role of clonal variants of MRSA in an outbreak of MRSA bacteraemia at a hospital in England. METHODS Bacteraemia isolates of the major UK lineages (EMRSA-15 and -16) from before and after the outbreak were analysed by whole-genome sequencing in the context of epidemiological and clinical data. For comparison, EMRSA-15 and -16 isolates from another hospital in England were sequenced. A clonal variant of EMRSA-16 was identified at the outbreak hospital and a molecular signature test designed to distinguish variant isolates among further EMRSA-16 strains. FINDINGS By whole-genome sequencing, EMRSA-16 isolates during the outbreak showed strikingly low genetic diversity (P < 1 × 10(-6), Monte Carlo test), compared with EMRSA-15 and EMRSA-16 isolates from before the outbreak or the comparator hospital, demonstrating the emergence of a clonal variant. The variant was indistinguishable from the ancestral strain by conventional typing. This clonal variant accounted for 64/72 (89%) of EMRSA-16 bacteraemia isolates at the outbreak hospital from 2006. CONCLUSIONS Evolutionary changes in epidemic MRSA strains not detected by conventional typing may be associated with changes in disease epidemiology. Rapid and affordable technologies for whole-genome sequencing are becoming available with the potential to identify and track the emergence of variants of highly clonal organisms

    RNA-Seq of Kaposi\u27s sarcoma reveals alterations in glucose and lipid metabolism

    Get PDF
    Kaposi\u27s sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi\u27s sarcoma (KS). It is endemic in a number of sub-Saharan African countries with infection rate of \u3e50%. The high prevalence of HIV-1 coupled with late presentation of advanced cancer staging make KS the leading cancer in the region with poor prognosis and high mortality. Disease markers and cellular functions associated with KS tumorigenesis remain ill-defined. Several studies have attempted to investigate changes of the gene profile with in vitro infection of monoculture models, which are not likely to reflect the cellular complexity of the in vivo lesion environment. Our approach is to characterize and compare the gene expression profile in KS lesions versus non-cancer tissues from the same individual. Such comparisons could identify pathways critical for KS formation and maintenance. This is the first study that utilized high throughput RNA-seq to characterize the viral and cellular transcriptome in tumor and non-cancer biopsies of African epidemic KS patients. These patients were treated anti-retroviral therapy with undetectable HIV-1 plasma viral load. We found remarkable variability in the viral transcriptome among these patients, with viral latency and immune modulation genes most abundantly expressed. The presence of KSHV also significantly affected the cellular transcriptome profile. Specifically, genes involved in lipid and glucose metabolism disorder pathways were substantially affected. Moreover, infiltration of immune cells into the tumor did not prevent KS formation, suggesting some functional deficits of these cells. Lastly, we found only minimal overlaps between our in vivo cellular transcriptome dataset with those from in vitro studies, reflecting the limitation of in vitro models in representing tumor lesions. These findings could lead to the identification of diagnostic and therapeutic markers for KS, and will provide bases for further mechanistic studies on the functions of both viral and cellular genes that are involved

    HSV-1 Remodels Host Telomeres to Facilitate Viral Replication

    Get PDF
    SummaryTelomeres protect the ends of cellular chromosomes. We show here that infection with herpes simplex virus 1 (HSV-1) results in chromosomal structural aberrations at telomeres and the accumulation of telomere dysfunction-induced DNA damage foci (TIFs). At the molecular level, HSV-1 induces transcription of telomere repeat-containing RNA (TERRA), followed by the proteolytic degradation of the telomere protein TPP1 and loss of the telomere repeat DNA signal. The HSV-1-encoded E3 ubiquitin ligase ICP0 is required for TERRA transcription and facilitates TPP1 degradation. Small hairpin RNA (shRNA) depletion of TPP1 increases viral replication, indicating that TPP1 inhibits viral replication. Viral replication protein ICP8 forms foci that coincide with telomeric proteins, and ICP8-null virus failed to degrade telomere DNA signal. These findings suggest that HSV-1 reorganizes telomeres to form ICP8-associated prereplication foci and to promote viral genomic replication

    Muscarinic Cholinergic Receptor Agonist and Peripheral Antagonist for Schizophrenia

    Get PDF
    Background: The muscarinic receptor agonist xanomeline has antipsychotic properties and is devoid of dopamine receptor-blocking activity but causes cholinergic adverse events. Trospium is a peripherally restricted muscarinic receptor antagonist that reduces peripheral cholinergic effects of xanomeline. The efficacy and safety of combined xanomeline and trospium in patients with schizophrenia are unknown. Methods: In this double-blind, phase 2 trial, we randomly assigned patients with schizophrenia in a 1:1 ratio to receive twice-daily xanomeline-trospium (increased to a maximum of 125 mg of xanomeline and 30 mg of trospium per dose) or placebo for 5 weeks. The primary end point was the change from baseline to week 5 in the total score on the Positive and Negative Syndrome Scale (PANSS; range, 30 to 210, with higher scores indicating more severe symptoms of schizophrenia). Secondary end points were the change in the PANSS positive symptom subscore, the score on the Clinical Global Impression-Severity (CGI-S) scale (range, 1 to 7, with higher scores indicating greater severity of illness), the change in the PANSS negative symptom subscore, the change in the PANSS Marder negative symptom subscore, and the percentage of patients with a response according to a CGI-S score of 1 or 2. Results: A total of 182 patients were enrolled, with 90 assigned to receive xanomeline-trospium and 92 to receive placebo. The PANSS total score at baseline was 97.7 in the xanomeline-trospium group and 96.6 in the placebo group. The change from baseline to week 5 was -17.4 points with xanomeline-trospium and -5.9 points with placebo (least-squares mean difference, -11.6 points; 95% confidence interval, -16.1 to -7.1; P<0.001). The results for the secondary end points were significantly better in the xanomeline-trospium group than in the placebo group, with the exception of the percentage of patients with a CGI-S response. The most common adverse events in the xanomeline-trospium group were constipation, nausea, dry mouth, dyspepsia, and vomiting. The incidences of somnolence, weight gain, restlessness, and extrapyramidal symptoms were similar in the two groups. Conclusions: In a 5-week trial, xanomeline-trospium resulted in a greater decrease in the PANSS total score than placebo but was associated with cholinergic and anticholinergic adverse events. Larger and longer trials are required to determine the efficacy and safety of xanomeline-trospium in patients with schizophrenia

    A prospective study of monitoring practices for metabolic disease in antipsychotic-treated community psychiatric patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with severe mental illness are at increased risk for metabolic and cardiovascular disease. A number of recent guidelines and consensus statements recommend stringent monitoring of metabolic function in individuals receiving antipsychotic drugs.</p> <p>Methods</p> <p>We conducted a prospective cohort study of 106 community-treated psychiatric patients from across the diagnostic spectrum from the Northeast of England to investigate changes in metabolic status and monitoring practices for metabolic and cardiovascular disease. We undertook detailed anthropometric and metabolic assessment at baseline and follow-up, and examined clinical notes and hospital laboratory records to ascertain monitoring practices.</p> <p>Results</p> <p>A high prevalence of undiagnosed and untreated metabolic disease was present at baseline assessment. Mean follow-up time was 599.3 (SD ± 235.4) days. Body mass index (p < 0.005) and waist circumference (p < 0.05) had significantly increased at follow-up, as had the number of individuals who were either overweight or obese. Fifty-three per cent of individuals had hypertriglyceridemia, and 31% had hypercholesterolemia, but only 7% were receiving lipid-lowering therapy. Monitoring practices were poor. Recording of measures of adiposity occurred in 0% of individuals, and > 50% of subjects had neither blood glucose nor lipids monitored during the follow-up period.</p> <p>Conclusion</p> <p>This cohort has a high prevalence of metabolic disease and heightened cardiovascular risk. Despite the publication of a number of recommendations regarding physical health screening in this population, monitoring rates are poor, and physical health worsened during the follow-up period.</p
    corecore