271 research outputs found
Normal sex differences in prenatal growth and abnormal prenatal growth retardation associated with 46,XY disorders of sex development are absent in newborns with congenital adrenal hyperplasia due to 21-hydroxylase deficiency
<p>Abstract</p> <p>Background</p> <p>Congenital adrenal hyperplasia due to 21-hydroxylase deficiency is the most common presentation of a disorder of sex development (DSD) in genetic females. A report of prenatal growth retardation in cases of 46,XY DSD, coupled with observations of below-optimal final height in both males and females with congenital adrenal hyperplasia due to 21-hydroxylase deficiency, prompted us to investigate prenatal growth in the latter group. Additionally, because girls with congenital adrenal hyperplasia are exposed to increased levels of androgens in the absence of a male sex-chromosome complement, the presence or absence of typical sex differences in growth of newborns would support or refute a hormonal explanation for these differences.</p> <p>Methods</p> <p>In total, 105 newborns with congenital adrenal hyperplasia were identified in our database. Gestational age (weeks), birth weight (kg), birth length (cm) and parental heights (cm) were obtained. Mid-parental height was considered in the analyses.</p> <p>Results</p> <p>Mean birth weight percentile for congenital adrenal hyperplasia was 49.26%, indicating no evidence of a difference in birth weight from the expected standard population median of 50th percentile (<it>P </it>> 0.05). The expected sex difference in favor of heavier males was not seen (<it>P </it>> 0.05). Of the 105 subjects, 44 (27%; 34 females, 10 males) had birth length and gestational age recorded in their medical chart. Mean birth length for this subgroup was 50.90 cm (63rd percentile), which differed from the expected standard population median of 50th percentile (<it>P </it>= 0.0082). The expected sex difference in favor of longer males was also not seen (<it>P </it>> 0.05).</p> <p>Conclusion</p> <p>The prenatal growth retardation patterns reported in cases of 46,XY disorders of sex development do not generalize to people with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Sex differences in body weight and length typically seen in young infants were not seen in the subjects who participated in this study. We speculate that these differences were ameliorated in this study because of increased levels of prenatal androgens experienced by the females infants.</p
Towards Space-like Photometric Precision from the Ground with Beam-Shaping Diffusers
We demonstrate a path to hitherto unachievable differential photometric
precisions from the ground, both in the optical and near-infrared (NIR), using
custom-fabricated beam-shaping diffusers produced using specialized
nanofabrication techniques. Such diffusers mold the focal plane image of a star
into a broad and stable top-hat shape, minimizing photometric errors due to
non-uniform pixel response, atmospheric seeing effects, imperfect guiding, and
telescope-induced variable aberrations seen in defocusing. This PSF reshaping
significantly increases the achievable dynamic range of our observations,
increasing our observing efficiency and thus better averages over
scintillation. Diffusers work in both collimated and converging beams. We
present diffuser-assisted optical observations demonstrating
ppm precision in 30 minute bins on a nearby bright star
16-Cygni A (V=5.95) using the ARC 3.5m telescope---within a factor of 2
of Kepler's photometric precision on the same star. We also show a transit of
WASP-85-Ab (V=11.2) and TRES-3b (V=12.4), where the residuals bin down to
ppm in 30 minute bins for WASP-85-Ab---a factor of 4 of
the precision achieved by the K2 mission on this target---and to 101ppm for
TRES-3b. In the NIR, where diffusers may provide even more significant
improvements over the current state of the art, our preliminary tests have
demonstrated ppm precision for a star on the 200"
Hale Telescope. These photometric precisions match or surpass the expected
photometric precisions of TESS for the same magnitude range. This technology is
inexpensive, scalable, easily adaptable, and can have an important and
immediate impact on the observations of transits and secondary eclipses of
exoplanets.Comment: Accepted for publication in ApJ. 30 pages, 20 figure
TOI-3785 b: A Low-Density Neptune Orbiting an M2-Dwarf Star
Using both ground-based transit photometry and high-precision radial velocity
(RV) spectroscopy, we confirm the planetary nature of TOI-3785 b. This
transiting Neptune orbits an M2-Dwarf star with a period of ~4.67 days, a
planetary radius of 5.14 +/- 0.16 Earth Radii, a mass of 14.95 +4.10, -3.92
Earth Masses, and a density of 0.61 +0.18, -0.17 g/cm^3. TOI-3785 b belongs to
a rare population of Neptunes (4 Earth Radii < Rp < 7 Earth Radii) orbiting
cooler, smaller M-dwarf host stars, of which only ~10 have been confirmed. By
increasing the number of confirmed planets, TOI-3785 b offers an opportunity to
compare similar planets across varying planetary and stellar parameter spaces.
Moreover, with a high transmission spectroscopy metric (TSM) of ~150 combined
with a relatively cool equilibrium temperature of 582 +/- 16 K and an inactive
host star, TOI-3785 b is one of the more promising low-density M-dwarf Neptune
targets for atmospheric follow-up. Future investigation into atmospheric mass
loss rates of TOI-3785 b may yield new insights into the atmospheric evolution
of these low-mass gas planets around M-dwarfs.Comment: 22 pages, 6 figures, 6 tables, Submitted to A
Recommended from our members
The Warm Neptune GJ 3470b Has a Polar Orbit
The warm Neptune GJ 3470b transits a nearby (d = 29 pc) bright slowly rotating M1.5-dwarf star. Using spectroscopic observations during two transits with the newly commissioned NEID spectrometer on the WIYN 3.5 m Telescope at Kitt Peak Observatory, we model the classical Rossiter–McLaughlin effect, yielding a sky-projected obliquity of and a . Leveraging information about the rotation period and size of the host star, our analysis yields a true obliquity of , revealing that GJ 3470b is on a polar orbit. Using radial velocities from HIRES, HARPS, and the Habitable-zone Planet Finder, we show that the data are compatible with a long-term radial velocity (RV) slope of over a baseline of 12.9 yr. If the RV slope is due to acceleration from another companion in the system, we show that such a companion is capable of explaining the polar and mildly eccentric orbit of GJ 3470b using two different secular excitation models. The existence of an outer companion can be further constrained with additional RV observations, Gaia astrometry, and future high-contrast imaging observations. Lastly, we show that tidal heating from GJ 3470b's mild eccentricity has most likely inflated the radius of GJ 3470b by a factor of ∼1.5–1.7, which could help account for its evaporating atmosphere.
</p
The Ninth Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-III Baryon Oscillation Spectroscopic Survey
The Sloan Digital Sky Survey III (SDSS-III) presents the first spectroscopic
data from the Baryon Oscillation Spectroscopic Survey (BOSS). This ninth data
release (DR9) of the SDSS project includes 535,995 new galaxy spectra (median
z=0.52), 102,100 new quasar spectra (median z=2.32), and 90,897 new stellar
spectra, along with the data presented in previous data releases. These spectra
were obtained with the new BOSS spectrograph and were taken between 2009
December and 2011 July. In addition, the stellar parameters pipeline, which
determines radial velocities, surface temperatures, surface gravities, and
metallicities of stars, has been updated and refined with improvements in
temperature estimates for stars with T_eff<5000 K and in metallicity estimates
for stars with [Fe/H]>-0.5. DR9 includes new stellar parameters for all stars
presented in DR8, including stars from SDSS-I and II, as well as those observed
as part of the SDSS-III Sloan Extension for Galactic Understanding and
Exploration-2 (SEGUE-2).
The astrometry error introduced in the DR8 imaging catalogs has been
corrected in the DR9 data products. The next data release for SDSS-III will be
in Summer 2013, which will present the first data from the Apache Point
Observatory Galactic Evolution Experiment (APOGEE) along with another year of
data from BOSS, followed by the final SDSS-III data release in December 2014.Comment: 9 figures; 2 tables. Submitted to ApJS. DR9 is available at
http://www.sdss3.org/dr
Mining metabolites: extracting the yeast metabolome from the literature
Text mining methods have added considerably to our capacity to extract biological knowledge from the literature. Recently the field of systems biology has begun to model and simulate metabolic networks, requiring knowledge of the set of molecules involved. While genomics and proteomics technologies are able to supply the macromolecular parts list, the metabolites are less easily assembled. Most metabolites are known and reported through the scientific literature, rather than through large-scale experimental surveys. Thus it is important to recover them from the literature. Here we present a novel tool to automatically identify metabolite names in the literature, and associate structures where possible, to define the reported yeast metabolome. With ten-fold cross validation on a manually annotated corpus, our recognition tool generates an f-score of 78.49 (precision of 83.02) and demonstrates greater suitability in identifying metabolite names than other existing recognition tools for general chemical molecules. The metabolite recognition tool has been applied to the literature covering an important model organism, the yeast Saccharomyces cerevisiae, to define its reported metabolome. By coupling to ChemSpider, a major chemical database, we have identified structures for much of the reported metabolome and, where structure identification fails, been able to suggest extensions to ChemSpider. Our manually annotated gold-standard data on 296 abstracts are available as supplementary materials. Metabolite names and, where appropriate, structures are also available as supplementary materials
Radial Velocity Discovery of an Eccentric Jovian World Orbiting at 18 au
Based on two decades of radial velocity (RV) observations using Keck/High Resolution Echelle Spectrometer (HIRES) and McDonald/Tull, and more recent observations using the Automated Planet Finder, we found that the nearby star HR 5183 (HD 120066) hosts a 3 minimum mass planet with an orbital period of yr. The orbit is highly eccentric (e ≃ 0.84), shuttling the planet from within the orbit of Jupiter to beyond the orbit of Neptune. Our careful survey design enabled high cadence observations before, during, and after the planet\u27s periastron passage, yielding precise orbital parameter constraints. We searched for stellar or planetary companions that could have excited the planet\u27s eccentricity, but found no candidates, potentially implying that the perturber was ejected from the system. We did identify a bound stellar companion more than 15,000 au from the primary, but reasoned that it is currently too widely separated to have an appreciable effect on HR 5183 b. Because HR 5183 b\u27s wide orbit takes it more than 30 au (1\u27\u27) from its star, we also explored the potential of complimentary studies with direct imaging or stellar astrometry. We found that a Gaia detection is very likely, and that imaging at 10 μm is a promising avenue. This discovery highlights the value of long-baseline RV surveys for discovering and characterizing long-period, eccentric Jovian planets. This population may offer important insights into the dynamical evolution of planetary systems containing multiple massive planets
The Habitable Zone Planet Finder Reveals a High Mass and Low Obliquity for the Young Neptune K2-25b
Using radial velocity data from the Habitable Zone Planet Finder, we have measured the mass of the Neptune-sized planet K2-25b, as well as the obliquity of its M4.5 dwarf host star in the 600–800 Myr Hyades cluster. This is one of the youngest planetary systems for which both of these quantities have been measured and one of the very few M dwarfs with a measured obliquity. Based on a joint analysis of the radial velocity data, time-series photometry from the K2 mission, and new transit light curves obtained with diffuser-assisted photometry, the planet's radius and mass are 3.44 ± 0.12 R_⊕ and 24.5_(-5.2)^(+5.7) M_⊕. These properties are compatible with a rocky core enshrouded by a thin hydrogen–helium atmosphere (5% by mass). We measure an orbital eccentricity of e = 0.43 ± 0.05. The sky-projected stellar obliquity is λ = 3° ± 16°, compatible with spin–orbit alignment, in contrast to other "hot Neptunes" that have been studied around older stars
The Habitable-zone Planet Finder Reveals A High Mass and a Low Obliquity for the Young Neptune K2-25b
Using radial-velocity data from the Habitable-zone Planet Finder, we have
measured the mass of the Neptune-sized planet K2-25b, as well as the obliquity
of its M4.5-dwarf host star in the 600-800MYr Hyades cluster. This is one of
the youngest planetary systems for which both of these quantities have been
measured, and one of the very few M dwarfs with a measured obliquity. Based on
a joint analysis of the radial velocity data, time-series photometry from the
K2 mission, and new transit light curves obtained with diffuser-assisted
photometry, the planet's radius and mass are
and . These properties are compatible
with a rocky core enshrouded by a thin hydrogen-helium atmosphere (5% by mass).
We measure an orbital eccentricity of . The sky-projected
stellar obliquity is , compatible with spin-orbit
alignment, in contrast to other "hot Neptunes" that have been studied around
older stars.Comment: Accepted for publication in AJ, 31 pages, 14 figure
- …