361 research outputs found

    On existence and uniqueness of the equilibrium state for an improved Nernst--Planck--Poisson system

    Get PDF
    This work deals with a model for a mixture of charged constituents introduced in [W. Dreyer et al. Overcoming the shortcomings of the Nernst-Planck model. \emph{Phys. Chem. Chem. Phys.}, 15:7075-7086, 2013]. The aim of this paper is to give a first existence and uniqueness result for the equilibrium situation. A main difference to earlier works is a momentum balance involving the gradient of pressure and the Lorenz force which persists in the stationary situation and gives rise to the dependence of the chemical potentials on the particle densities of every species

    An approach to task representation based on object features and affordances

    Get PDF
    Multi-purpose service robots must execute their tasks reliably in different situations, as well as learn from humans and explain their plans to them. We address these issues by introducing a knowledge representation scheme to facilitate skill generalization and explainability. This scheme allows representing knowledge of the robot’s understanding of a scene and performed task. We also present techniques for extracting this knowledge from raw data. Such knowledge representation and extraction methods have not been explored adequately in previous research. Our approach does not require any prior knowledge or 3D models of the objects involved. Moreover, the representation scheme is easy to understand for humans. The system is modular so that new recognition or reasoning routines can be added without changing the basic architecture. We developed a computer vision system and a task reasoning module that works with our knowledge representation. The efficacy of our approach is demonstrated with two different tasks: hanging items on pegs and stacking one item on another. A formalization of our knowledge representation scheme is presented, showing how the system is capable of learning from a few demonstrations

    Analysis of improved Nernst--Planck--Poisson models of compressible isothermal electrolytes. Part II: Approximation and a priori estimates

    Get PDF
    We consider an improved Nernst--Planck--Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convection--diffusion--reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross--diffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which continues the investigation of [DDGG17a], we derive for thermodynamically consistent approximation schemes the natural uniform estimates associated with the dissipations. Our results essentially improve our former study [DDGG16], in particular the a priori estimates concerning the relative chemical potentials

    Existence of weak solutions for improved Nernst--Planck--Poisson models of compressible reacting electrolytes

    Get PDF
    We consider an improved Nernst-Planck-Poisson model for compressible electrolytes first proposed by Dreyer et al. in 2013. The model takes into account the elastic deformation of the medium. In particular, large pressure contributions near electrochemical interfaces induce an inherent coupling of mass and momentum transport. The model consists of convection-diffusion-reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity and the Poisson equation for the electrical potential. Cross-diffusion phenomena occur due to the principle of mass conservation. Moreover, the diffusion matrix (mobility matrix) has a zero eigenvalue, meaning that the system is degenerate parabolic. In this paper we establish the existence of a global-in- time weak solution for the full model, allowing for cross-diffusion and an arbitrary number of chemical reactions in the bulk and on the active boundary

    Analysis of improved Nernst--Planck--Poisson models of compressible isothermal electrolytes. Part III: Compactness and convergence

    Get PDF
    We consider an improved Nernst--Planck--Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convection--diffusion--reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross--diffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which continues the investigations of [DDGG17a, DDGG17b], we prove the compactness of the solution vector, and existence and convergence for the approximation schemes. We point at simple structural PDE arguments as an adequate substitute to the Aubin--Lions compactness Lemma and its generalisations: These familiar techniques attain their limit in the context of our model in which the relationship between time derivatives (transport) and diffusion gradients is highly non linear

    Analysis of improved Nernst--Planck--Poisson models of compressible isothermal electrolytes. Part I: Derivation of the model and survey of the results

    Get PDF
    We consider an improved Nernst--Planck--Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account the elastic deformation of the medium that induces an inherent coupling of mass and momentum transport. The model consists of convection--diffusion--reaction equations for the constituents of the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross--diffusion phenomena must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper we establish the existence of a global--in--time weak solution for the full model, allowing for a general structure of the mobility tensor and for chemical reactions with highly non linear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time. With respect to our former study [DDGG16], we also essentially improve the a priori estimates, in particular concerning the relative chemical potentials
    • …
    corecore