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Abstract: Multi-purpose service robots must execute their tasks reliably in different situations, as
well as learn from humans and explain their plans to them. We address these issues by introducing a
knowledge representation scheme to facilitate skill generalization and explainability. This scheme
allows representing knowledge of the robot’s understanding of a scene and performed task. We also
present techniques for extracting this knowledge from raw data. Such knowledge representation
and extraction methods have not been explored adequately in previous research. Our approach does
not require any prior knowledge or 3D models of the objects involved. Moreover, the representation
scheme is easy to understand for humans. The system is modular so that new recognition or reasoning
routines can be added without changing the basic architecture. We developed a computer vision
system and a task reasoning module that works with our knowledge representation. The efficacy of
our approach is demonstrated with two different tasks: hanging items on pegs and stacking one item
on another. A formalization of our knowledge representation scheme is presented, showing how the
system is capable of learning from a few demonstrations.

Keywords: computer vision; explainability; task understanding; scene understanding; robot perception

1. Introduction

One issue with deploying multi-purpose service robots in human-occupied spaces,
such as homes, is that these environments are constantly changing. Therefore, to function
well, robots must be robust to changes in the environment or situation. Another issue is that
the robot’s workspace is shared with humans, who might tell the robot what to do, and who
need to understand the intentions of the robot to feel safe and comfortable around it [1].
These issues (i.e., adaptation and communication) can be addressed by designing appro-
priate knowledge representation. We present such a knowledge representation formalism
here to facilitate both skill generalization and explainability. To deploy this knowledge
representation in practice, we developed a set of techniques to extract knowledge auto-
matically from raw input data, which are also presented here (the source code is available
online at: https://github.com/lubiluk/halepensis (accessed on 12 August 2022)).

The foundation of our knowledge representation is a graph-based scheme for scene
and task understanding, which can be conveniently viewed and interpreted by humans.
The process of building such a graph can be divided into two stages. The first stage, which
does not consider the goal of the task, finds objects, object features, and relations between
them. As a result, a graph of spatial–visual concepts is built. In the second stage, which
incorporates the goal of the task, an analysis of the scene graph is performed. It infers what
changes are made during the demonstration and which of these changes are essential for
the task. At the end of this stage, we obtain knowledge about the task at hand in a compact
form: as a graph and operations on the graph.

Details, such as feature grounding or trajectory calculation, are left to be inferred
during the task execution. We show that by capturing only essential details, our compact
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representation is particularly suited for generalization and improvization. Just as humans
can improvise and repurpose an object for a different use, such as using a mug to scoop
some soup out of a container [2], our system can also consider the task requirements and
affordances of the available objects to adopt an object for a novel use to fulfill a given task.
Moreover, in our approach, task completion criteria are encoded right in the knowledge
representation, so we can check if our actions have succeeded or not, and keep trying until
the desired goal is reached.

Many contemporary semantic task representations encode information in hierarchical
ontologies [3,4]. These facilitate generalizations where we can infer that an object can be
used in a certain way based on the category to which it belongs. For instance, a cup belongs
to the category vessel, so it can be used for drinking, mixing, or pouring [4]. However,
such ontologies suffer from one significant drawback: objects and their categories must be
decided beforehand. The robot must accurately recognize an object from the input data,
and place it in an appropriate category, which constrains how it can be used. So, though a
robot can infer that a cup can be used for carrying tea (for instance), it cannot infer that the
cup can be used as a projectile to throw at a burglar.

In contrast to most other works that design knowledge representations around
objects [3–6], our approach decomposes objects into constituent features that facilitate
certain actions, a method that is motivated by biological models of how the human brain
learns object affordances [7,8]. For example, a “virtual finger” hypothesis has been pro-
posed [9] for ad hoc motion planning to satisfy the task constraints obtained by analyzing
the current situation.

Another aspect of task representation is describing a motion sequence that achieves the
desired goal. Previous research studies have used pre-programmed routines [2,3], trained
control modules [10], or other forms of motion notations [11] to describe motion trajectories,
and assign meanings to particular actions, such as “picking up”. In our approach, we
assume that motion categories or even trajectories are not crucial for task descriptions.
There might be a number of possible trajectories that can achieve the desired results,
and their particular manifestations largely depend on the anatomy of the robot and the
available spatial constraints. Therefore, we opt for motion plans that are calculated ad
hoc: on the spot where the motion is needed, and at the time when the motion is needed.
Appropriate motion planners can then be put in place to be used when accurate data are
available [12,13].

The efficacy of our approach—focusing on object features and generating motion
trajectories on the fly—was demonstrated in a robotic system prototype in our previous
research [2]. In this earlier approach, useful object features needed to be hand-picked. In the
research presented here, we extended this approach to infer object features automatically.

We explain here the principle of our knowledge representation formalism, and present
algorithms based on it in a simplified scenario where the input to our reasoning algorithm
consists of two point clouds: one presenting the scene before the task execution, and the
other after taking a sequence of actions. The system analyzes these two point clouds
and generates a description of the actions that comprise the task in the formalism of our
representation.

The novelty of our approach lies in: (a) representing objects as a set of constituent
features or affordances, (b) system transparency for greater explainability, and (c) working
with objects without having their full 3D models upfront.

Due to the novelty of our task understanding representation, and the fact that we
propose a new way of generalizing knowledge, our method is not directly comparable,
in terms of performance, to any of the existing state-of-the-art approaches. Therefore, to
demonstrate the efficacy of our approach, we present qualitative experimental results on
two different tasks.

The rest of the article is organized as follows: First, we review the related research, then
we introduce our knowledge representation scheme and the design of a system built around
it. We present the formalization of our knowledge representation and algorithms and
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conduct the computational complexity analysis. Next, we discuss experimental evaluation
results from two tasks: the task of hanging items on pegs, and the task of stacking items.
Afterward, we perform ablation studies of our reasoning system. Finally, we present our
conclusions and discuss future research directions.

2. Related Work

The problem of a scene and task understanding is directly connected to the one of
robotic skill adaptation. Robotic skill representation and adaptation is a major topic in
robotic research with a number of different approaches present in the literature, though
the problem is far from being solved. Some contemporary approaches are based on deep
learning [10,14,15] or probabilistic [16,17] methods to encode a skill completely. Even
though they often achieve good performance and generalization capabilities, they are not
able to explain their decisions to human users, because their knowledge is encoded in
the opaque form of neural network weights or probabilities. In this work, we explore a
knowledge representation system based on symbols that is understandable and can be
interpreted by a human. Works that are most closely related to our research are those that
focus on symbolic and semantic knowledge representations, such as semantic graphs [17]
or ontologies [3,4,18–22].

Knowledge representation is recognized as a key ingredient in a successful robotic
system, especially when the robot is intended to work among humans or in human envi-
ronments [23,24]. Knowledge representation also lies at the heart of the most proposed
solutions to scene understanding, which are comparable to our approach. Good knowledge
representation should undoubtedly be robust, meaning that it should allow the robot to
generalize its skills. Explainability of the robot’s knowledge and its decisions is also desired
if the robot is to be deployed in human-occupied spaces.

Many existing approaches to these problems rely on ontologies as the basis for knowl-
edge representation. An ontology is a tree-like structure containing information about
objects and places. By traversing an ontology we can find answers to commonsense ques-
tions, such as: what kind of utility class does the object at hand belong to; or what can be
done with this object, i.e., what are its typical affordances. A notable ontology often used in
related research is KnowRob [4], which is based on an earlier Open-EASE project [25]. It
lets a user, typically a robot, query various types of information about surrounding objects.
Alternate solutions, such as knowledge embeddings [26], serve the same purpose of finding
information about objects. However, all information in such ontologies is pre-compiled
earlier (for instance) by scraping websites or available databases. Moreover, known objects
have full 3D models available. In a robotic setup, the knowledge base is often accompanied
by a separate system for describing perceived situations and task plans, and for governing
plan execution, as knowledge coming from ontologies or other sources must be combined
with the raw data available to the robot in order to be used for scene understanding or
manipulation [27–30].

Most of the related works treat objects as whole entities and assign roles to them.
However, some works consider constituent object features as the bases for reasoning. For
example, [6] decomposes objects into constituent features, but focuses only on features related
to one particular action, namely grasping. In our approach, we discover multiple features
so that features relevant to different actions can be selected. In [31], object affordances are
considered as functions of object parts and their spatial relations. However, they focus only
on in-hand tool classification, whereas we implement a similar idea on a much broader scale.

To illustrate how our system advances the state-of-the-art, we compare our system
with other closely related ones in Table 1. None of the existing systems perform exactly
the same task as ours, but we can compare symbolic knowledge representations as well as
learning abilities of related systems. We can see from the table that our system incorporates
some of the most desirable properties, such as working without 3D models of objects,
learning efficiently, and generalizing to different tasks. Moreover, our system provides
human-understandable representation of its scene and task understanding.
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Table 1. A comparison of some aspects of related works that can be compared with our system.
Takeuchi et al. is a deep learning-based approach while Mitrevski et al. and Kazhoyan and Beetz are
based on symbolic knowledge, they require some programming in order to be used in different tasks.
The Kazhoyan and Beetz system offers a programmable interface instead of learning.

Gajewski-
Indurkhya

Takeuchi
et al. [15]

Mitrevski
et al. [3]

Kazhoyan-
Beetz [11]

Works without
prior knowledge

of 3d models
Yes Yes No No

Can generate
human-

understandable
explanations

Yes No Partially Partially

Learns from few
(<10)

demonstrations
Yes, ≥2 No, ≥1000 No, 25 No

Can learn
different tasks Yes No Manually Manually

In this research, we draw inspiration from cognitive science ideas, such as the idea of
projection as a tool for skill adaptation [32]. Features in our system are not rigidly tied to
particular objects but are discovered on the fly, opening up a possibility for reinterpreting
scenes depending on the task at hand.

3. System Overview
3.1. A Graph-Based Knowledge Representation

Our knowledge representation is based on graphs. A set of graphs represents all the
knowledge discovered by the system about the situation at hand. There is one graph for
each step of the task, of which there are currently only two: before hanging the item and
after hanging the item. The result of the reasoning system, which captures the knowledge
about task requirements, is also presented as a graph.

Each node in the graph represents a physical part or property of the scene; therefore,
we call these nodes “entities”. There are two types of nodes: one for objects and one for
everything else that belongs to objects. Therefore, an object is always a top-level node in
the graph. Internally, entities carry a set of data useful for different parts of the recognition
and reasoning system: type, ID, 3D position and orientation, bounding box corners, and a
point cloud. The list of all possible relation types is predefined, but can be changed, and
consists of all types of entities for which there are recognizers.

Edges represent relations between entities. The basic and most prevalent relation used
is that of containment and is expressed as a “has” relation. For visual clarity, we omit labels
for such relations. Edges carry only one type of information, namely the relation type.
Similar to the entity types, the list of all possible relation types is predefined but can be
changed. Each new revision of the system may add new relation types; with each relation
type accompanied by an appropriate relation recognizer.

Our system is designed to be used by a robot to learn from a human demonstration
of how to perform a certain task. We implemented a prototype of our system for the use
case of hanging items on pegs. After a training round of demonstrations, the robot is
able to hang arbitrary objects in different types of hangers, as long as the object has some
affordances for hanging, e.g., some kind of aperture or a curved hook. The robot also
positions the object correctly, and with stability, so that it stays hung without falling or
swinging. This requires that the item be hung by an aperture above its center of mass. All
of this information is incorporated into the knowledge generated by our system.
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3.2. Task-Understanding Algorithm

The algorithm for task understanding proceeds in the following six steps:

Step 1: Pre-processing the raw input point clouds.
Step 2: Detecting objects in the scene.
Step 3: Detecting changes between scenes.
Step 4: Detecting features of objects that participated in the change.
Step 5: Describing spatial relations between features.
Step 6: Forming hypotheses about key task requirements.

Results from Steps 1–4 are stored in a knowledge graph. Each consecutive step, except
the first, uses information available in the graph. Figure 1 provides a graphical overview of
the algorithm.

B

B

B

B

D

D

E

A1

A2

C1

C2

F

Figure 1. System overview. A1—point cloud before task execution; A2—point cloud after task
execution; B—feature detection routines; C1—scene understanding graph before task execution;
C2—scene understanding graph after task execution; D—relation detection routines; E—reasoning
module; F—task description.

The steps of the algorithm result in a task-understanding graph. However, if the
procedure is applied at least twice to slightly different situations, we can merge their
resulting task-understanding graphs into a generic skill-knowledge graph. We now describe
below each step of the algorithm.

3.3. Pre-Processing the Input Point Clouds

Before the scene understanding pipeline begins its work, the input point clouds are pre-
processed. Raw point clouds come from an Intel RealSense L515 LiDAR camera. This camera
typically produces a small number of artifact points between objects that are at different
distances from the camera. Those points are removed using statistical outlier removal [33]. As
the hanging task takes place near a wall, a significant number of points in raw point clouds
belong to the wall. These points are removed using RANSAC plane segmentation [34]. In
the case of the stacking task, the same method is used to remove the table plane.

3.4. Detecting Objects

The next step of the algorithm is to find distinct objects. This is done using the
Euclidean cluster extraction [35] for the before-scene. Later, the same objects are detected in
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the after-scene using the iterative closest point aligning algorithm. It is crucial to keep track
of which objects from the before-scene correspond to which objects from the after-scene for
the later steps to work properly.

3.5. Detecting Changes

To reduce the number of expensive recognition and detection operations, only a subset
of the objects in the scene is considered for the analysis. The algorithm focuses on objects
that have moved or are in contact with a moving object. This is done by comparing object
positions before and after the task execution. Holding the camera firmly in place while
performing the task demonstration facilitates this process.

3.6. Detecting Object Features

The key element of our approach is to focus on object features rather than on whole
objects. Therefore, we employed a number of feature detection routines (Figure 1B) to detect
various significant parts of the objects involved in the task. We developed a procedural hole
detector that looks for apertures in objects. Our goal was to detect holes from a functional
perspective; therefore, we did not require the aperture to be completely closed. For instance,
we can see in Figure 2 that the semi-closed space in the top section of the hanger is classified
as a hole. Similarly, we created detectors for pegs (parts of the object that stick out). We
also have a routine for estimating the center of mass, which is often useful for conducting
certain tasks, such as deciding how to hang an item with stability (the center of mass should
be below the peg).

Figure 2. Two demonstrations, upper and lower, are input to the system. On the left are the point
clouds representing scenes before the task execution. On the right are the point clouds representing
scenes after the task execution. Whole objects are highlighted in red and detected object features are
highlighted in yellow.
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3.7. Describing Relations

The next step is to describe relations between previously detected objects and their
features. For this, we used a number of primitive routines(Figure 1D) designed to find
meaningful but abstract relations. In the current prototype, we implemented routines for
the following relations: below and inside. They work by comparing object positions and
their estimated bounding boxes.

3.8. Task Understanding

Having all the description elements in place, the next step is to formulate hypotheses
about the observed task. This is done by comparing the before-scene and after-scene graphs
(Figure 3). The system looks for relations created during the task execution and turns them
into constraints that must be satisfied for the task to be successful. This knowledge about
task requirements can also be expressed in the form of a graph. Execution of such a task
means grounding its symbols in the new scene facing the robot.

object_0

hole_0 mass_center hole_1

peg_0

below below

object_1

inside

object_0

hole_0 hole_1mass_center

peg_0

below

peg_2

belowbelow

object_1

inside

Figure 3. Scene descriptions in the form of a graph of feature relations. They correspond to the point
clouds depicted in Figure 2.

3.9. Skill Learning

At this stage, it is likely that we end up with more constraints than necessary. Such
redundancy is not a problem if we always use the same objects. However, ideally, the
system should infer the minimal set of constraints that might be useful for many different
objects. We can facilitate this by providing another demonstration of the same task but
with a different object. In our example scenario, we provide a second demonstration with
the same hanger but hanging it differently: this time using the aperture in its center rather
than the dedicated hook. (For some demonstrations, we had to manually provide the
transformation of objects between before-scene and after-scene, as our object detection
routine could not always cope with this automatically. Similarly, the “inside” relation
detector did not work properly, so we had to enter that information manually into the
scene graph.)

The result of skill learning is a generalized set of rules that should be satisfied for any
hanging task to be successful. These rules can be viewed as a table or as a graph.
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3.10. Formal Characterization

Definitions 1 outline a formalism of our graph-based knowledge representations and
functions used to produce this representation. The knowledge corpus (6) consists of known
entity and relation types (1, 2). Entities are represented as nodes on knowledge graphs,
relations are represented as graph edges. Nodes carry information (3) about the scene parts
they represent. Graphs are made of entity (4) and relation (5) instances: they constitute
scene (8) and task (9) representations, which together form the knowledge base (7).

Using this formalism we can describe our task understanding algorithm (Algorithm 1).
It uses several functions (Definition 1, 12–17) for intermediate steps of processing point
clouds and graph operations. The result of the algorithm is a task description ready to be
grounded and used.

Definition 1.

E−A set of known scene entity types (1)

R−A set of known entity relation types (2)

P− Entity properties: id, position, etc. (3)

Ei := {Et, Ep}, Et ∈ E, Ep ∈ P Entity Instance (4)

Ri := {Rt, Ei1, Ei2}, Rt ∈ R, Ei1, Ei2 ∈ Ei Relation Instance (5)

Kc := {E, R} Knowledge Corpus (6)

Kb := {Sr1, Sr2, Tr} Knowledge Base (7)

Sri := {Sei, Sri}, Sei ∈ Ei, Sri ∈ Rii ∈ {1, 2} Scene Representation (8)

Tr := {St, Sr}, St ∈ E, Sr ∈ R Task Representation (9)

G(Tr) −→ Srt, Srt −Desired scene state Task Knowledge Grounding (10)

Pc−A point cloud (11)

PreProcess(Pc) −→ Pc Pre-processing (12)

DetectObjects(Pc) −→ Ei Object detection (13)

DetectFeatures(Ei) −→ Ei Feature detection (14)

DetectRelations(Ei) −→ Ri Relation detection (15)

DescribeScene(Ei, Ri) −→ Sr Scene description (16)

DescribeTask(Sr1, Sr2) −→ Tr Task description (17)

Algorithm 1 Task understanding algorithm

Input
Pc1 point cloud of the before-scene
Pc2 point cloud of the after-scene

Output
Tr Task description

1: Pc1 ← PreProcess(Pc1), Pc2 ← PP(Pc2)
2: Se1 ← {}, Sr1 ← {}, Se2 ← {}, Sr2 ← {} . empty sets
3: Se1 += DetectObjects(Pc1), Se2 += DetectObjects(Pc2) . adding elements to sets
4: Se1 += DetectFeatures(Se), Se2 += DetectFeatures(Se)
5: Sr1 += DetectRelations(Se), Sr2 += DetectRelations(Se)
6: Sd1 ← DescribeScene(Se1, Sr1), Sd2 ← DescribeScene(Se2, Sr12)
7: Tr ← DescribeTask(Sd1, Sd2)

3.11. Computation Complexity

The reference hardware used to report computation times uses a 2.5 GHz Quad-Core
Intel Core i7 with 16 GB 1600 MHz DDR3 memory and an SSD hard drive.
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Most of the computation complexity comes from opening and processing raw point
clouds before they can be used in reasoning mechanisms. Pre-processing was done once
for every point cloud. In our main experiment, we used a total of four point clouds to
generate a good quality task description. Pre-processing involves statistical outlier removal,
downsampling, computing normal vectors for each point, fitting, and removing the plane
using RANSAC fitting. The average (collected over 10 runs) pre-processing time for one
point cloud is 4465 ms. Each raw point cloud consists of about 786,000 points.

All feature recognition modules that use PCL library functions, which currently all
of them do, are subject to fine-tuning, which may dramatically change the speed of exe-
cution depending on the chosen settings. In Table 2, we list the execution times for our
recognition modules.

Table 2. Average feature recognition routine run times across five trials.

Object Detection Pegs Detection Holes Detection Object Properties
Detection

165 ms 11 ms 73 ms 43 ms

Each relation recognition routine makes at least n2 comparison operations, where n is
the number of vertices in the graph.

The complexity of the task description algorithm depends on the sizes of the graphs
that are built for a given pair of point clouds. The number of operations used in this
algorithm can be estimated as follows:

Nop ≈ NVb + NVa + NVb · NEb + NVa · NEa + 2 · (NVb + NVa)

where:

Nop is the number of operations.
NVb is the number of vertices in the before-graph.
NVa is the number of vertices in the after-graph.
NEb is the number of edges in the before-graph.
NEa is the number of edges in the after-graph.

The complexity of the task understanding refinement algorithm, which merges task
descriptions, is similar; however, this algorithm operates on much smaller graphs:

Nop ≈ NVt1 + NVt1 + NVt1 · NEt1 + NVt2 · NEt2 + 2 · (NVt1 + NVt2)

where:

Nop is the number of operations.
NVt1 is the number of vertices in the first task graph.
NVt2 is the number of vertices in the second task graph.
NEt1 is the number of edges in the first task graph.
NEt2 is the number of edges in the second task graph.

4. Experiments and Results
4.1. Hanging Task

The following setup was used for our training experiments in the task of hanging
items on pegs: A peg rail was mounted on a wall, with a depth camera (Intel RealSense
L515) standing in front of it (Figure 4). In the first step, we introduced an object, a cloth
hanger in this example, by holding it in front of the camera. This image was captured
by the camera and stored as before-point-cloud. Next, we hung the cloth hanger on one
of the pegs and took another snapshot as after-point-cloud. The process was repeated
but with the following change: the hanger was hung not by its hook but by its central
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aperture. All the point clouds captured in these steps were then given as input to the
task-understanding algorithm.

Figure 4. The setup. A LiDAR-based depth camera on a tripod standing in front of the experi-
ment scene.

The results of the learning process are presented in two different ways: as a table
(Table 3) and as a graph (Figure 5). It can be noted that the last rule in the table is somewhat
questionable. It is there because both our demonstrations include that relation. This
suggests that there is potential for creating a more universal set of rules by providing more
diverse demonstrations.

Table 3. A set of rules representing learned skill requirements.

Object 1 Feature Type Required
Relation Object 2 Feature Type

object_1 peg inside object_0 hole
object_0 mass_center below object_1 peg
object_0 hole below object_1 peg

object_0 object_1

belowhole

belowmass_center

inside
peg

Figure 5. A graph representing learned skill requirements.

4.2. Stacking Task

To further demonstrate the flexibility of our proposed knowledge representation and
scene understanding system, we performed another experiment with the task of stacking
one item on top of another. For example, we have a mug and a box laying on the table (see
Figure 6). During the demonstration, we picked up the mug and placed it on top of the box.
We performed this demonstration two times.

For this task, the core of the reasoning system, as well as the overall processing pipeline,
stayed the same as before. To produce good quality task descriptions, we added two new
feature recognition routines for detecting surfaces, and object bases. Additionally, a new
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relation of “touching” was introduced. Irrelevant recognition modules for the “inside”
relation, as well as the “hole” and “pegs” features, were turned off. (We expect that in
future applications of the system, appropriate modules will be chosen depending on the
characteristics of the task or a robot will autonomously test different hypotheses to prune
unnecessary features from task understanding graphs.)

Figure 6. Point clouds (pre-processed) of the item stacking task. Left: before the demonstration,
right: after the demonstration.

The result of learning the stacking task is shown in Figure 7. The system has correctly
inferred that to complete this task, it must position the mug (object_1) in such a way that
its base touches the surface of the box (object_0). Moreover, the center of mass of the mug
must be above the surface. Two rules could be considered equivalent or redundant: these
could be interchanged or used together to position the mug. Nonetheless, all three rules
are correct.

object_0 object_1
below

below
surface

below

below
mass_center

below

below
base

mass_centertouching

base

Figure 7. A graph representing learned skill requirements for the task of stacking items.

4.3. Ablation Studies

The quality of the task description depends on the types of recognition routines
available in the system. We can demonstrate that dependency by turning off different
recognizers and examining the system’s output. The effects of turning off some recognition
routines in the hanging task are presented in Table 4.
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Table 4. The effects of turning off certain recognition routines.

Recognized Feature or Relation Effect on Task Description

Below relation

There is no information on how to position the
cloth hanger center of mass relative to the peg,
which may result in an unstable hang if the task
is to be executed.

Inside relation
The requirement of placing the cloth hanger
aperture in such a way that the peg is inserted
inside of it is missing from the task description.

Hole entity
The resulting task description only requires
positioning the hanger’s center of mass some-
where below the peg

Peg entity
The resulting task description is completely
empty. The system found no way to describe
the task without the notion of a peg.

5. Discussion

To test the learning efficiency of our system, we ran tests where the system had all
recognition modules turned on, some of which were irrelevant to the task at hand. By
providing multiple demonstrations, we were able to prune all unnecessary task rules
and keep only the relevant ones. As seen in Figure 8, the hanging task converged to
two essential rules after five demonstrations. The stacking task converged just after two
demonstrations. In general, the more variations there are in different demonstrations, the
faster the system learns.

Figure 8. Plots of the learning process in the task of hanging (left), and stacking (right). The number
of inferred task requirements decreases with each demonstration to then converge to a minimum.

There is a requirement that must be met for the learning process to be successful:
all features and relations crucial for the task must be successfully recognized in each
demonstration. This is a limitation that could be addressed in several ways. For instance,
if an entity or relation is present in most of the demonstrations, we could assume that it
should be there, even though some demonstrations lack them.

6. Conclusions and Future Research

The knowledge representation used in this paper, while drawing inspiration from
more comprehensive knowledge representation systems can be thought of as a particular
instantiation of a graph-based knowledge representation scheme that is especially well-
suited for skill learning and adaptation in robots. Contrary to many contemporary graph-
like representations, it focuses not on objects themselves but their constituent parts, features,
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and their affordances—‘objects’ are merely bags for grouping these affordances under
one label.

The computer vision system presented here demonstrates how this knowledge repre-
sentation can be used for generalizing skills and explaining them to a human. This highly
modular system can form descriptions of scenes perceived through a depth camera, and
infer requirements that must be satisfied for completing a task successfully.

The scene understanding approach used by our system can be integrated into a bigger
robotic system as it works with real objects captured by a depth camera from one angle.

Future extensions of our proposed system include both improvements to the current
system as well as developing companion systems for task planning and execution on a
robotic platform.

Our vision system could benefit from more advanced recognition techniques that
include color information and better point cloud filtering or smoothing. Each recognition
module of the system can be improved individually to use the state-of-the-art algorithms
appropriate for it. All of the recognition modules could also benefit from adding more
cameras and using a continuous point cloud registration. Our current system consists
of the simplest recognition routines that worked for our dataset, as the main focus of
the research presented here was on understanding the algorithms rather than computer
vision techniques.

In future research, we also plan to develop a manipulation planner to execute motions
on a robot, as well as develop more recognition modules to extend vision capabilities. This
system could be accompanied by task planning and execution systems in order to use on a
robot. In this way, a robot could perform experiments to validate hypotheses on its own,
reducing the need to provide multiple demonstrations by hand.
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