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Analysis of improved Nernst–Planck–Poisson models of
compressible isothermal electrolytes.
Part II: Approximation and a priori estimates

Wolfgang Dreyer, Pierre-Étienne Druet, Paul Gajewski, Clemens Guhlke

Abstract

We consider an improved Nernst–Planck–Poisson model first proposed by Dreyer et al. in
2013 for compressible isothermal electrolytes in non equilibrium. The model takes into account
the elastic deformation of the medium that induces an inherent coupling of mass and momentum
transport. The model consists of convection–diffusion–reaction equations for the constituents of
the mixture, of the Navier-Stokes equation for the barycentric velocity, and of the Poisson equation
for the electrical potential. Due to the principle of mass conservation, cross–diffusion phenomena
must occur and the mobility matrix (Onsager matrix) has a kernel. In this paper, which contin-
ues the investigation of [DDGG17a], we derive for thermodynamically consistent approximation
schemes the natural uniform estimates associated with the dissipations. Our results essentially
improve our former study [DDGG16], in particular the a priori estimates concerning the relative
chemical potentials.

1 Introduction

This paper is the second part of an investigation devoted to the mathematical analysis of an improved
Nernst-Planck-Poisson system first proposed in [DGM13] and extended in [DGL14, DGM15]. In the
first part of this investigation (see [DDGG17a]), we have exposed the model and presented a survey
of the main results. In this paper we deal with the rigorous derivation and the technical framework
concerning:

� The reformulation of the problem in natural variables following the original ideas of [DGM13];

� The construction of thermodynamically consistent approximation schemes that preserve the
natural dissipation mechanisms;

� The a priori estimates for the system.

In particular, we will identify the relative chemical potentials as natural variables in the mass transfer
equations. For these variables, we prove a complex estimate valid for very general structures of the
diffusion tensor and of the bulk and boundary chemical reactions (see Theorem 3.1 below). The esti-
mate relies on an initial compatibility condition which was first introduced in [DDGG16] and represents
a new concept in the analysis of systems subject to chemical reactions. The method is absolutely new
and deserves attention in its own right. It essentialy simplifies and improves our former approach in
[DDGG16].
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W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke 2

The model. We consider a bounded domain Ω ⊂ R3 representing an electrolyte. The boundary of
Ω possesses a disjoint decomposition ∂Ω = Γ ∪ Σ: The surface Γ represents an active surface, a
one-sided interface between the electrolyte and an external material (electrode). The surface Σ is an
inert outer wall. The electrolyte is a compressible mixture of N ∈ N species A1, . . . ,AN with mass
densities ρ1, . . . , ρN . Each species Ai is a carrier of atomic mass mi ∈ R+, charge zi ∈ Z and
possesses a reference specific volume Vi ∈ R+. We assume that the system is isothermal. Follow-
ing [DDGG16, DDGG17a], the mixture obeys in ]0, T [×Ω the following system of partial differential
equations

∂ρi
∂t

+ div(ρi v + J i) = ri for i = 1, . . . , N (1)

∂% v

∂t
+ div(% v ⊗ v − Svisc) +∇p = −nF ∇φ (2)

−ε0 (1 + χ)4φ = nF . (3)

Here, v denotes the barycentric velocity of the mixture, while for i = 1, . . . , N the quantities J i

and ri denote the dissipative diffusion flux, and the mass production due to chemical reactions for
the ith constituent. In the momentum balance (2), we have introduced the total bulk mass density
% :=

∑N
i=1 ρi, the viscous stress tensor Svisc, the pressure p, and the Lorentz force −nF ∇φ for a

quasi-static approximation of the electro-dynamical phenomena. The function nF is the density of free
charges. Moreover, ε0 is the Gauss constant, while χ denote the dielectric susceptibility of the medium
assumed constant as well.

In order to formulate constitutive equations for the quantities J , r and p, the free energy of the system
must be specified. Following [DDGG17a] (see [DGM13] for the original breakthrough), we assume that
its density %ψ is given in the form %ψ = h(θ, ρ), where the function h is defined via

h(θ, ρ) =
N∑
i=1

ρi µ
ref
i + hmech(ρ) + hmix(θ, ρ)

hmech = K F (
N∑
i=1

ni Vi)

hmix = kB θ
N∑
i=1

ni

N∑
i=1

yi ln yi

(4)

Here µref
i (i = 1, . . . , N ) are constants related to certain reference states of the pure constituents.

The number densities or concentrations n1, . . . , nN of the constituents are defined via ni := ρi/mi

(i = 1, . . . , N ). The mechanical free energy is an increasing function of the dimensionless quantity∑N
i=1 ni Vi =: n · V (a ’volume density’ for the mixture). The constant K > 0 is the compression

modulus of the mixture. In the definiton of the mixing-entropy, kB denotes the Boltzmann constant and
θ is the absolute temperature assumed constant. The quantity

∑N
i=1 ni is the total number density

and yi := ni/(
∑N

i=1 ni) (i = 1, . . . , N ) are the number fractions summing up to one.

The chemical potentials of the mixture are defined via

µi = ∂ρih(θ, ρ1, . . . , ρN) for i = 1, . . . , N . (5)

Thus, under the particular constitutive assumption (4)

µi = ci +K Vi
mi
F ′(n · V ) + kB θ

mi
ln yi for i = 1, . . . , N , (6)
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Improved Nernst–Planck–Poisson systems. Part II 3

where c1, . . . , cN are certain constants. The following constitutive equations and definitions are as-
sumed:

J i = −
N∑
j=1

Mi,j D
j for i = 1, . . . , N , (7a)

Dj := ∇
(µj
θ

)
+

1

θ

zj
mj

∇φ for j = 1, . . . , N (7b)

ri = −
s∑

k=1

∂DR
k
Ψ(DR

1 , . . . , D
R
s ) γki , DR

k := γk · µ (7c)

Svisc(∇v) = η D(v) + λ div v Id (7d)

p = −h(θ, ρ) +
N∑
i=1

µi ρi (7e)

nF =
N∑
i=1

zi
mi
ρi (7f)

In (7a), M is a symmetric, positive semi definite N ×N matrix called the mobility matrix, while D ∈
RN×3 is the diffusion driving force. In (7c), s ∈ N∪{0} is the number of chemical reactions. The vector
γk ∈ RN (k = 1, . . . , s) does not as usual denote the stoichiometric vector γstoi,k ∈ ZN associated
with the reactions. For reasons of notation we set γk := γstoi,k

i mi for i = 1, . . . , N and k = 1, . . . , s.
The reaction potential Ψ is defined on Rs and assumed convex (plausible examples in [DDGG17a]).
The entries of the vectorDR ∈ Rs are called reaction driving forces. The assumption (7d) is the usual
expression for the Newtonian viscous stress tensor: Here D(v) = (∂ivj + ∂jvi)i,j=1,...,3 while η > 0
and λ+ 2

3
η ≥ 0 are the coefficients of shear and bulk viscosity. The constitutive assumption (7e) for

the pressure is called the Gibbs-Duhem equation, while (7f) is actually the definition of the free charge
density.

The equations (1), (2), (3) with the constitutive equations (7) based on the choice (4) of the free energy
density are the constituent parts of a generalised model of Poisson–Nernst–Planck type first proposed
in [DGM13] and extensively developed in [DGL14], [DGM15] and [Guh14]. This model provides a
general description of electrolytes in the presence of electrochemical interfaces for non equilibrium
situations. In this paper, the focus is on mathematical analysis and we will consider for the system (1),
(2), (3) simplified boundary conditions. At first we assume no velocity slip, and Dirichlet conditions for
the electrical potential on the active boundary

v = 0 on ]0, T [×∂Ω (8)

φ = φ0 on ]0, T [×Γ, ∇φ · ν = 0 on ]0, T [×Σ . (9)

At second, for the diffusion-reaction equations we assume for i = 1, . . . , N that

J i · ν + r̂i = −J0
i (10a)

r̂i :=
ŝΓ∑
k=1

R̂Γ
k (t, x, γ̂1 · µ, . . . , γ̂ ŝΓ · µ) γ̂ki (10b)

J0
i :=

ŝΓ∑
k=1

k(t, x) γ̂ki . (10c)
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The boundary conditions describe the reaction and adsorption of contituents on the active surface
]0, T [×Γ in contact with an external bulk. The meaning of the number ŝΓ ∈ N ∪ {0} and of the
vectors γ̂1, . . . , γ̂ ŝ

Γ ∈ RN have been explained in the modelling part of the paper [DDGG17a]. Both
are related to the boundary reaction and adsorption phenomena. In particular, each vector γ̂k satisfies∑N

i=1 γ̂
k
i = 0. In other words, it is orthogonal to the vector 1 = 1N = (1, 1, . . . , 1) ∈ RN . The

vector field R̂Γ defining the reaction rates is derived from a potential Ψ̂Γ : ]0, T [×Γ × RŝΓ → R0,+

via

R̂Γ(t, x, D) = ∇DΨ̂Γ(t, x, D) for (t, x) ∈]0, T [×Γ, D ∈ RŝΓ .

Following [DDGG17a], the potential Ψ̂Γ is convex in theD variable, and∇DΨ̂Γ(t, x, 0) = 0. In (10),
the coefficients  ∈ [0, T ]× Γ→ span{γ̂1, . . . , γ̂ ŝ

Γ} are given.

2 Assumptions on the data and preliminaries.

Notations To get rid of overstressed indexing, we simplify the notation by making use of vectors. For
instance we denote ρ the vector of mass densities, n the vector of number densities i.e.

ρ := (ρ1, ρ2, . . . , ρN) ∈ RN , n := (n1, n2, . . . , nN) ∈ RN .

Moreover we define the vector 1 := 1N := (1, 1, . . . , 1) ∈ RN , and the vectors of quotients of
charge and mass, and of volume and mass

z

m
:= ( z1

m1
, z2
m2
, . . . , zN

mN
) ∈ RN ,

V

m
:= ( V1

m1
, V2

m2
, . . . , VN

mN
) ∈ RN .

Using these conventions, we have a. o. the identities

% = 1 · ρ, nF =
z

m
· ρ, n · V = ρ · V

m
etc.

The diffusion fluxes J1, . . . , JN span a rectangular matrix J = {J ij} ∈ RN × R3. The upper index
corresponds to the lines of this matrix. Vectors of RN are multiplicated from the left, as for instance in
1 · J =

∑N
i=1 J

i which is an identity in R3.

The vectors γ1, . . . , γs span a rectangular matrix γ = {γki } ∈ Rs × RN . The upper index corre-
sponds to the line of the matrix. Vectors of Rs are multiplicated from the left, as for instance in the
identity r = R · γ =

∑s
k=1Rk γ

k in RN . Analogously the vectors γ̂1, . . . , γ̂ ŝ
Γ

span a rectangular
matrix γ̂ = {γ̂ki } ∈ RŝΓ × RN .

Since we assume overall that θ = const, we write h(ρ) for h(θ, ρ).

The analysis presuposes restrictions of mathematical nature to the data.

(1) Free energy: In (4), we assume that the function F belongs toC2(R+)∩C(R0,+) and is convex.
We assume that there are 3

2
< α < +∞ and constants 0 < c0, c1 such that

F (s) ≥ c0 s
α − c1 for all s > 0 . (11)

In the neighbourhood of zero, we assume that F (s) behaves like s ln s: There are constants
positive constants k0 < k1 and s0 > 0 such that

k0

s
≤ F ′′(s) ≤ k1

s
for all s ∈]0, s0] . (12)

As explained in the papers [DDGG16], [DDGG17a] we crucially need that F ′ : R+ → R is a
surjective map in order to obtain an unconstrained PDE system.
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(2) Mobility matrix: We assume that the mobility matrix M is given by a mapping M(ρ) of the mass
densities. The mapping M is defined on RN

+ and it maps into the set of symmetric, positive semi
definite N ×N matrices. Throughout the paper, we assume that M is mass conservative, that is

M(ρ)1 = 0 for all ρ ∈ RN
+ . (13)

Moreover we assume that the entries of M(ρ) are continuous functions with at most linear–
growth. In this paper we restrict ourselves to the assumption thatM has rankN−1 independently
on ρ: Denoting 0 = λ1(M) ≤ λ2(M) ≤ . . . ≤ λN(M) the eigenvalues of the matrix M , we
assume that there are positive constants 0 < λ ≤ λ such that

λ ≤ λi(M(ρ)) ≤ λ (1 + |ρ|) for all i = 2, 3, . . . , N, ρ ∈ RN
+ . (14)

(3) Reaction rates: We assume that the reaction rates are derived from a strictly convex, non-
negative potential Ψ ∈ C2(Rs). Moreover, Ψ satisfies

Ψ(0) = 0,
Ψ(DR)

|DR|
→ +∞ for |DR| → ∞ . (15)

Similarly, we require that the boundary reaction rates are derived from a strictly convex, non-
negative potential Ψ̂Γ ∈ L∞([0, T ]× Γ; C2(RŝΓ)) such that

Ψ̂Γ(t, x, 0) = 0 for (almost) all (t, x) ∈ [0, T ]× Γ . (16)

For simplicity we explicitly require at least linear growth of the reaction rates (uniformly quadratic
growth of the potentials)

inf
DR∈Rs

λmin(D2Ψ(DR)) > 0, essinf
(t,x)∈[0,T ]×Γ

inf
DΓ,R∈RŝΓ

λmin(D2ΨΓ(t, x, DΓ,R)) > 0 . (17)

(4) Domain: The domain Ω ⊂ R3 possesses a boundary of class C0,1. In connection with the optimal
regularity of the solution to the Poisson equation with mixed-boundary conditions, we need to
introduce a further exponent r(Ω, Γ) as the largest number in the range ]2,+∞[ such that

−4u = f in [W 1,β′

Γ (Ω)]∗ implies u ∈ W 1,β
Γ (Ω)

for all f ∈ [W 1,β′

Γ (Ω)]∗ and all β ∈]r′, r[ . (18)

With the α from (11), we require that

α′ :=
α

α− 1
< r . (19)

(5) Initial and boundary data: We assume sufficient (not optimal) regularity

ρ0 ∈ L∞(Ω; (R+)N)

v0 ∈ L∞(Ω; R3)

φ0 ∈ L∞(0, T ; W 1,r(Ω)) ∩ L∞(]0, T [×Ω)

∂tφ0 ∈ W 1,0
2 (]0, T [×Ω) ∩ Lα′(]0, T [×Ω)

 ∈ L∞(]0, T [×Γ; RŝΓ) .

(20)

Moreover we assume as a compatibility condition the validity in the weak sense of −ε0 (1 +
χ)4φ0(0) = z

m
· ρ0.
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Functional classes: We make use of standard Sobolev spaces. Moreover, the vectorial Orlicz classes
LΨ(Q; Rs) and LΨ∗(QT ; Rs) are then well known. We make use of the notation

[DR]LΨ(Q;Rs) :=

∫
QT

Ψ(DR(t, x)) dx dt .

For Ψ̂Γ ∈ L∞(S; C2(RŝΓ)), we define a vectorial Orlicz class LΨ̂Γ(S; RŝΓ) as the set of all mea-

surable D̂Γ,R : S → RŝΓ such that

[D̂Γ,R]L
Ψ̂Γ (S;RŝΓ ) :=

∫
S

Ψ̂Γ(t, x, D̂Γ,R(t, x)) dS(x) dt < +∞ .

Let us recall (see [DDGG16] for a detailed construction) that there is a non-negative function Φ∗ ∈
C([0, T ]2), Φ∗(t, t) = 0 constructed from the functions Ψ, Ψ̂Γ such that the variable

ρ̄ :=

∫
Ω

ρ =

∫
Ω

R(%, q) , (21)

satisfies the estimate [ρ̄]CΦ∗ ([0,T ];RN ) := supt1, t2∈[0,T ]
|ρ̄(t1)−ρ̄(t2)|

Φ∗(t1, t2)
< +∞.

Formulation of the weak problem. Following [DDGG16], [DDGG17a] a solution vector to the initial
boundary value problem (1), (2), (3), (7), (8), (9), (10) with initial conditions (=: Problem (P )) is
composed of the scalars % : Q → R+ (total mass density) and φ : Q → R (electrical potential)
and of the vector fields q : Q→ RN−1 (relative chemical potentials), and v : Q→ R3 (barycentric
velocity field). Since we want to account for the possibility of vacuum, the productions factors are
not everywhere functions of these components only. Thus we also introduce R : Q → Rs and
RΓ : S → RŝΓ as variables. For a vector (%, q, v, φ, R, RΓ), we recover all variables of the
system via

ρ = R(%, q) (22a)

J = −M(ρ)D, D := ∇E q +
z

m
∇φ (22b)

r =
s∑

k=1

γk Rk, DR
k := γk · Eq for k = 1, . . . , s (22c)

r̂ =
ŝΓ∑
k=1

γ̂k RΓ
k , D̂Γ,R

k := γ̂k · Eq for k = 1, . . . , ŝΓ (22d)

p = P (%, q) (22e)

nF = ρ · z
m
. (22f)

For q ∈ RN−1, we denote E q :=
∑N−1

i=1 qi ξ
i, where ξ1, . . . , ξN−1 ∈ RN are fixed vectors that are

extendable via 1N to a basis of RN (details below in Section 4). The vector fieds R and the pressure
function P are associated with (5), (6), and are likewise constructed in Section 4. We next state the
main properties of weak solutions.

(1) Energy conservation: We say that (%, q, v, φ, R, RΓ) satisfies the (global) energy (in)equality
with free energy function h and mobility matrix M if and only if the associated fields and variables

DOI 10.20347/WIAS.PREPRINT.2396 Berlin 2017



Improved Nernst–Planck–Poisson systems. Part II 7

(22) satisfy for almost all t ∈]0, T [

∫
Ω

{
1

2
% v2 +

1

2
ε0 (1 + χ) |∇φ|2 + h(ρ)

}
(t)

+

∫
Qt

{
S(∇v) : ∇v +M D ·D + (Ψ(DR) + Ψ∗(−R))

}
+

∫
St

{Ψ̂Γ(·, D̂Γ,R) + (Ψ̂Γ)∗(·, −RΓ)}

(<)
=

∫
Ω

{
1

2
%0 |v0|2 +

1

2
ε0 (1 + χ) |∇φ0(0)|2 + h(ρ0)

}
∫
Qt

{
nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t

}
−
∫

Ω

{
nF φ0 − ε0 (1 + χ)∇φ · ∇φ0

}∣∣∣∣t
0

+

∫
St

((r̂ + J0) · z
m
φ0 + J0 · Eq) . (23)

(2) Balance of total partial masses: We say that (%, q, v, φ, R, RΓ) satisfies the balance of total
partial masses if the vector field (cf. (21)) is subject to

ρ̄(t) = ρ̄0 +

∫ t

0

{∫
Ω

r +

∫
Γ

(r̂ + J0)

}
(s) ds for all t ∈ [0, T ] . (24)

with ρ̄0 :=
∫

Ω
ρ0 dx.

(3) Natural class: We say that (%, q, v, φ, R, RΓ) belongs to the class B(T, Ω, α, rkM, Ψ, ΨΓ)
if and only if the number

[(%, q, v, φ, R, RΓ)]B(T,Ω, α, rkM,Ψ,ΨΓ) :=

‖%‖L∞,α(Q) + ‖v‖W 1,0
2 (Q;R3) + ‖√% v‖L∞,2(Q;R3) + ‖φ‖L∞(Q) + ‖∇φ‖L∞,β(Q)

+ ‖∇q‖W 1,0
2 (Q;RN−1) + [DR]LΨ(Q;Rs) + [D̂Γ,R]L

Ψ̂Γ (S;RŝΓ )

+ ‖J‖
L

2, 2α
1+α (Q;RN×3)

+ [−R]LΨ∗ (Q;Rs) + [−RΓ]L
(Ψ̂Γ)∗ (S;RŝΓ ) + ‖p‖

Lmin{1+ 1
α ,

5
3−

1
α }(Q)

+ [ρ̄]CΦ∗ ([0,T ])

is finite (β := min
{
r(Ω, Γ), 3α

(3−α)+

}
).

(4) Weak solution: We call a vector (%, q, v, φ, R, RΓ) ∈ B(T, Ω, α, N − 1, Ψ, ΨΓ) weak
solution to the Problem (P ) if the energy inequality and the balance of partial total masses are

DOI 10.20347/WIAS.PREPRINT.2396 Berlin 2017



W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke 8

valid, and if the quantities ρ, J , r and r̂, p and nF obeying the definitions (22) satisfy the relations

−
∫
Q

ρ · ψt −
∫
Q

(ρi v + J i) · ∇ψi (25)

=

∫
Ω

ρ0 · ψ(0) +

∫
Q

r · ψ +

∫
ST

(r̂ + J0) · ψ ∀ψ ∈ C1
c ([0, T [; C1(Ω; RN))

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η (26)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η ∀ η ∈ C1
c ([0, T [; C1

c (Ω; R3))

ε0 (1 + χ)

∫
Q

∇φ · ∇ζ =

∫
Q

nF ζ ∀ ζ ∈ L1(0, T ; W 1,2
Γ (Ω)) , (27)

φ = φ0 as traces on ]0, T [×Γ

and if r and r̂ obey their representation (7c), (10b) in the vacuum free sets Q+(%) and S+(%)
([DDGG17a, DDGG17b] for details).

3 Main estimate

We will prove that the boundedness in the class B is a natural property of weak solutions. For one
part, the a priori bounds result from standard methods (Gronwall Lemma) or from known properties of
the Navier-Stokes equations (pressure estimate). However, our estimate on the q variable is original.
The dissipation due to diffusion allows only to control∇q while the reactions provide a control only for
the projection on the space

W := span
{
γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ

Γ
}
. (28)

Call selection S of cardinality |S| ≤ N a subset {i1, . . . , i|S|} of {1, . . . , N} such that i1 ≤ . . . ≤
i|S|. For every selection, we introduce the corresponding projector PS : RN → RN via PS(ξ)i = ξi
for i ∈ S, and PS(ξ)i = 0 otherwise. We define a linear subspace WS ⊂ RN via

WS := span
{
PS(γ1), . . . , PS(γs), PS(γ̂1), . . . , PS(γ̂ ŝ

Γ

)
}
.

The selection S will be called uncritical if dim(WS) = |S| and critical otherwise. For every selection
S, we denote Sc the complementary selection {1, . . . , N}\S. It can easily be shown that the manifold

Mcrit := RN
+ ∩

⋃
S⊂{1,...,N}, S critical

WS × PS⊥(RN) (29)

is the finite union of sub manifolds of dimension at most N − 1. We say that the initial compatibility
condition is satisfied if the initial vector of the total partial masses ρ̄0 :=

∫
Ω
ρ0 dx ∈ RN

+ satisfies
ρ̄0 6∈ Mcrit.

Theorem 3.1. Assume that ρ̄(t) ∈ {ρ̄0} ⊕ W for all t ∈ [0, T ] (cf. (24)). Let s̃ := dimW and
b1, . . . , bs̃ be a basis of W . Then, if dist(ρ̄0,Mcrit) > 0, the estimate

‖q‖L2(Q;RN−1) ≤ c (k0 T
1
2 + ‖b1 · µ, . . . , bs̃ · µ)‖L2(Q;Rs̃) + c∗0 ‖∇q‖L2(Q;R(N−1)×3)) ,

is valid, where c∗0 and k0 depend on dist(ρ̄0,Mcrit).
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Improved Nernst–Planck–Poisson systems. Part II 9

The critical manifold was first introduced in [DDGG16] and is a new concept in the analysis of systems
with chemical reactions.

Our plan is as follows. The properties of the nonlinear algebraic equation (5) determine the analysis
of the model. Our next Section 4 is devoted to the solution of these equations in the natural variables
of the mass transfer problem. The natural variables are, on the one hand, the total mass density
% =

∑N
i=1 ρi and, on the other hand, a N − 1 dimensional reduction of the vector µ that we shall

denote q := Πµ. The variable q ∈ RN−1, that we call vector of the relative chemical potentials, is
constructed via a projection of the vector µ onto 1⊥ := {X ∈ RN :

∑N
i=1Xi = 0}. The reader is

referred to the Section 6 of [DDGG17a] or to [DDGG16] for more background.

After that, we shall turn our attention to the Pde s. In the Section 5 we introduce thermodynamically
consistent regularisations of the problem (P ) for which it is easier to prove the solvability. For this
larger class of problems, we then derive the energy and global mass balance identities (Section 6)
and the resulting a priori estimates (Section 7). The Section 8 deals in particular with the proof of
Theorem 3.1.

4 The natural variables. Algebraic statements

As far as the mass transfer part of the problem (P ) is concerned, the natural estimates resulting
from the energy identity arise for the total mass density % and for a N − 1 dimensional reduction of
the vector µ, its projection on 1⊥. In this section we describe the solution mapping for the nonlinear
algebraic equation (5) in these variables. In particular, this section provides the rigorous derivation of
the statements announced in the Section 6 of [DDGG17a]. For the proofs we mainly follow the lines of
the former study [DDGG16].

4.1 The case of a general free energy

The algebraic relation between partial mass densities ρ and chemical potentials µ is given by

µi = ∂ih(ρ1, . . . , ρN) for i = 1, . . . , N . (30)

In the isothermal case we can forget about the temperature-dependence, and h = h(ρ). Using tools
of convex analysis, we immediately obtain that the relation (30) is invertible if h is convex and smooth.
In the remainder of the paper we always denote RN

+ = (R+)N = {X ∈ RN : Xi > 0 for i =
1, . . . , N}, and RN

0,+ = (R0,+)N = {X ∈ RN : Xi ≥ 0 for i = 1, . . . , N}.

Lemma 4.1. Let h ∈ C2(RN
+ ) ∩ C(RN

0,+) be convex. Let D∗h ⊆ RN be the set Image(∇h; RN
+ ),

that is D∗h = {µ ∈ RN : ∃ ρ ∈ RN
+ , µ = ∇h(ρ)}. Then, the Legendre transform of h, denoted h∗,

is a well-defined proper convex function on D∗h, and it satisfies h∗ ∈ C2(D∗h). Moreover the relation
(30) is valid for µ ∈ D∗h and ρ ∈ RN

+ if and only if ρ = ∇h∗(µ).

Proof. Since h ∈ C(RN
0,+), it is a closed proper convex function in the sense of [Roc70]. The claim

follows from the Theorem 26.5 of this book.

Next we investigate the possibility to introduce ’mixed’ coordinates to describe the set of solutions to
(30). Let ξ1, . . . , ξN ∈ RN be a basis of RN such that ξN := 1. Choose η1, . . . , ηN ∈ RN such
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that ξi · ηj = δji , i, j = 1, . . . , N . We define a ’projector’ Π : RN → RN−1 and an extension
operator E : RN−1 → RN associated with the basis {ξi}i=1...,N via

ΠX := (X · η1, . . . , X · ηN−1) for X ∈ RN

Eq :=
N−1∑
k=1

qk ξ
k for q ∈ RN−1 .

Corollary 4.2. Assumptions of Lemma 4.1. Let ξ1, . . . , ξN ∈ RN be a basis of RN such that ξN :=
1. Define a set D ⊆ R+ × RN−1 via

D :=

{
(s, q) ∈ R+ × RN−1 : ∃t ∈ R

{
Eq + t1 ∈ D∗h
1 · ∇h∗(Eq + t1) = s

}
.

Then, D is open and there is a function M ∈ C1(D), (s, q) 7→M (s, q) such that (30) is valid for
µ ∈ D∗h and ρ ∈ RN

+ if and only if

µ =
N−1∑
i=1

(Πµ)i ξ
i + M (ρ · 1, Πµ) 1

= (E ◦ Π)µ+ M (ρ · 1, Πµ) 1 .

The derivatives of M satisfy the identities

∂sM (ρ · 1, q) =
1

D2h∗(µ)1 · 1
, ∂qjM (ρ · 1, q) =− D2h∗(µ)1 · ξj

D2h∗(µ)1 · 1
j = 1, . . . , N − 1 . (31)

Proof. Define an open set U ⊂ RN−1 × R via

U := {(q, t) ∈ RN−1 × R : Eq + t1 ∈ D∗h} .

We define a function G : U ×R+ → R via G(q, t, s) := 1 · ∇h∗(Eq + t1)− s. We compute the
partial derivatives and we use the strict convexity of D2h∗ to show that

∂tG(q, t, s) = D2h∗(Eq + t1)1 · 1 > 0, ∂qjG(q, t, s) = D2h∗(Eq + t1) ξj · 1 .

Consider now the solution manifold for G = 0 in U × R+. Since Gt > 0, we obtain from the implicit
function theorem that there is M ∈ C1(D)

G(q, t, s) = 0 if and only if t = M (s, q) .

In particular, ∂sM = G−1
t (q, t, s) and ∂qM = −Gq/Gt.

Assume now that (30) is valid for µ ∈ D∗h and ρ ∈ RN
+ . We express µ =

∑N−1
i=1 (µ·ηi) ξi+(µ·ηN)1.

Then G(Πµ, µ · ηN , ρ · 1) = 0 so that µ · ηN = M (ρ · 1, Πµ).

Corollary 4.3. Assumptions as in Corollary 4.2. Then there is a bijection R : C1(D ; RN
+ ) such that

(30) is valid for µ ∈ D∗h and ρ ∈ RN
+ if and only if ρi = Ri(ρ · 1, Πµ) for i = 1, . . . , N .
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Improved Nernst–Planck–Poisson systems. Part II 11

Proof. For (s, q) ∈ D , we define R(s, q) := (∇h∗)(E q + M (s, q) 1). We may compute that

∂qjRi(s, q) = D2h∗ei · ξj − D2h∗ei · 1D2h∗ξj · 1
D2h∗1 · 1

∂sRi(s, q) =
D2h∗ei · 1
D2h∗1 · 1

.

(32)

In these formula, D2h∗ is evaluated at µ = Eq + M (s, q)1. In order to prove that R is a bijection,
it is sufficient to show that dR is invertible. Let X = (r, q) ∈ R× RN−1 arbitrary. Then dRX = 0
means that for i = 1, . . . , N one has

ei ·D2h∗
(
Eq − 1

(
r +D2h∗1 · Eq
D2h∗1 · 1

))
= 0 .

The uniform invertibility of D2h∗ yields Eq = 1
(
r+D2h∗1·Eq
D2h∗1·1

)
. We now multiply this identity with

η1, . . . , ηN−1, and since ηj ·1 = 0 for j = 1, . . . , N−1, it follows that q1, . . . , qN−1 = 0. Therefore
also r = 0, and the claim follows.

The pressure function. The pressure is given by the formula p := −h +
∑N

i=1 ρi µi. We imme-
diately see under (30) that p = h∗(µ) where h∗ is the convex conjugate of h. We define a function
P : D → R via

P (s, q) := h∗(E q + M (s, q)1) .

Lemma 4.4. Let (s, q) ∈ D . Then P ∈ C1(D) satisfies

∂sP (s, q) =
s

D2h∗1 · 1
, ∂qjP (s, q) = ξj · ∇h∗(µ)− s D

2h∗1 · ξj

D2h∗1 · 1
.

In these formula, D2h∗ is evaluated at µ = Eq + M (s, q)1.

Proof. Define µ := E q + M (s, q)1 and ρ = ∇h∗(µ). Then

∂sP (s, q) = 1 · ∇h∗(µ) Ms(s, q) = ρ · 1Ms(s, q)

∂qjP (s, q) = ξj · ∇h∗(µ) + 1 · ∇h∗(µ)Mqj(s, q) = ρ · ξj + ρ · 1Mqj(s, q)

and the claim follows from the Corollary 4.2.

4.2 Special constitutive choice of the free energy

For special choices of the free energy, we can find more explicit formula than Lemma 4.1. Under the
conditions (4), the relation (30) reads

µi = ci +K
Vi
mi

F ′(V · n) +
kB θ

mi

ln yi i = 1, . . . , N , (33)

where c1, . . . , cN ∈ R are certain constants depending on the reference states, θ > 0 is the absolute
temperature assumed constant and kB is the Boltzmann constant.

Note that the free energy h = href +hmech +hmix satisfies the assumptions of Lemma 4.1 if we assume
that the function F ∈ C2(R+) ∩ C(R0,+) is convex. At first we want to characterise the set D∗h and
we need a preliminary Lemma.
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Lemma 4.5. There is a function f ∈ C1(RN) such that if the identity (33) is valid for µ ∈ RN and
n ∈ RN

+ then F ′(V · n) = f(µ). Moreover, the function f satisfies the following inequalities
m

K V
(sup

i
µi − sup

i
ci) ≤ f(µ) ≤ m

K V
(sup

i
µi − inf

i
ci) + kB θ

K V
lnN (34)

and |∇f | ≤ m/(V K). For V ∈ RN
+ we here abbreviate V := infi=1,...,N Vi and V := supi=1,...,N V .

Proof. Define a function G : RN × R→ R, (µ, t) 7→ G(µ, t) via

G(µ, t) :=
N∑
i=1

exp

(
mi (µi − ci)−K Vi t

kB θ

)
− 1 .

For µ ∈ RN , it is readily verified that limt→−∞G(µ, t) = +∞ and that limt→+∞G(µ, t) = −1.
Since Gt(µ, t) < 0, the solution manifold to G(µ, t) = 0 is a curve {(µ, f(µ)) : µ ∈ RN} where
∂if(µ) = −G−1

t (µ, f(µ))Gµi(µ, f(µ)). Easy computations show that

∂if(µ) =
mi

K

exp
(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

) . (35)

In particular |∇f | ≤ mV K−1. Moreover, if G(µ, t) = 0, then setting

yi = exp

(
mi (µi − ci)−K Vi t

kB θ

)
,

we see that µi = ci + K Vi
mi
t + kB θ

mi
ln yi for i = 1, . . . , N . Since y ∈]0, 1[N and y · 1 = 1, the

estimates (34) easily follow.

We are now ready to prove an inversion formula for the relation (33).

Corollary 4.6. Assume that the function F ∈ C2(R+) ∩ C(R0,+) is convex.

Define D∗h := Image(∇h; RN
+ ). Then D∗h = {µ ∈ RN : f(µ) ∈ Image(F ′, R+)}. If µ ∈ D∗h,

then

∂ih
∗(µ) = mi ([F

′]−1 ◦ f)(µ)
exp

(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

)
= ∂i(F

∗ ◦ f)(µ) .

(36)

with F ∗ = Legendre transform of F .

Proof. If µ ∈ D∗h, then there is ρ ∈ RN
+ such that µ = ∇h(ρ). Thus, (33) is valid, and Lemma

4.5 shows that F ′( V
m
· ρ) = f(µ). Thus, f(µ) ∈ Image(F ′, R+) and this first yields the inclusion

D∗h ⊆ {µ ∈ RN : f(µ) ∈ Image(F ′, R+)}. In order to prove the reverse inclusion, consider
µ ∈ RN such that f(µ) ∈ Image(F ′, R+). Denote

g(µ) := [F ′]−1 ◦ f(µ) , ρi := mi g(µ)
exp

(
mi (µi−ci)−K Vi f(µ)

kB θ

)
∑N

j=1 Vj exp
(
mj (µj−cj)−K Vj f(µ)

kB θ

)
We easily show that∇h(ρ) = µ. Making use of (35), we see that

∂ih
∗(µ) = K g(µ) ∂if(µ) = ∂i(F

∗ ◦ f)(µ) .
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Lemma 4.7. Assumptions of Corollary 4.6. Assume moreover (12). Then∇h∗ ∈ C1(D∗h). For i, j =
1, . . . , N

D2h∗i,j(∇h(ρ)) = (37)

mi ρj δ
j
i

kB θ
+
ρi ρj
n · V

(
1

K n · V F ′′(n · V )
+

V 2 · n
kB θ n · V

− Vi + Vj
kB θ

)
is valid with V 2 · n :=

∑N
i=1 V

2
i ni. There further holds

|D2h∗(∇h(ρ))| ≤ C1 ρ · 1 (38)

D2h∗(∇h(ρ))1 · 1 ≥ C0
1

K F ′′(ρ · 1)
. (39)

Proof. By direct computation starting from (36) we obtain (37). This entails

|D2h∗i,j(∇h(ρ))| ≤ ρi

(
mi

kB θ
+
mj

V

(
1

K n · V F ′′(n · V )
+

V
2

kB θ V
+ 2

V

kB θ

))

≤ C ρi

(
1 +

1

K n · V F ′′(n · V )

)
.

The function s F ′′(s) is asymptotically equivalent to s s−1 = const near zero (cf. (12)) and to
s sα−2 = sα−1 for s large. Thus, there is a constant c0 > 0 such that infs∈R+ s F

′′(s) ≥ c0,
and (38) follows. Further

D2h∗1 · ei =
ρi ρ · 1

K F ′′(n · V ) (n · V )2

+
ρi
kB θ

(
mi +

ρ · 1V 2 · n
(n · V )2

− Vi ρ · 1
n · V

− ρ · V
n · V

)
.

Thus
N∑

i,j=1

D2h∗j,i

=
(ρ · 1)2

K (V · n)2 F ′′(V · n)
+

1

kB θ

(
m · ρ+

(ρ · 1)2 V 2 · n
(V · n)2

− 2
ρ · V ρ · 1
n · V

)
=

(ρ · 1)2

K (V · n)2 F ′′(V · n)
+

1

kB θ

(
√
m · ρ− ρ · 1

√
V 2 · n

V · n

)2

+
2

kB θ

ρ · 1
n · V

(
√
m · ρ

√
V 2 · n− V · ρ) . (40)

The estimate (39) is a straightforward consequence of (40) and of the Cauchy-Schwarz inequality: we
can express Vi ρi = (Vi

√
ni) (mi

√
ni).In (39), we further make use of F ′′(n · V ) ≥ F ′′(c %) ≥

c̃ F ′′(%) (cf. (12)).

As corollaries of Lemma 4.7, note that the functions M ∈ C1(D) of Corollary 4.2 and P ∈ C1(D)
satisfy for all (s, q) ∈ D the following inequalities (cp. (31), Lemma 4.4):

1

C1 s
≤ ∂sM (s, q) ≤ K F ′′(s)

C0

, |∂qM (s, q)| ≤ C1

C0

K sF ′′(s)

1

C1

≤ ∂sP (q, s) ≤ K sF ′′(s)

C0

, |∂qjP (s, q)| ≤ C s (1 +K sF ′′(s)) .
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Remark 4.8. For the applicability of our approximation methods we are restricted to the case that
D∗h = RN . In view of the Corollary 4.6 this is basically the case if F ′ is surjective. In this case,
D = R+ × RN−1 and there is no state-constraint on µ.

Remark 4.9. In the case that the polynomial growth of the function F is less than 9/5, we rely in the
analysis of the PDE system on the convexity of the function s 7→ P (s, q) at fixed q. We are able
to establish this property only in the very special case that P is a function of the total mass density.
We note the following trivial observation: Define P as in the Lemma 4.4 and assume that the vectors
V ∈ RN

+ and m ∈ RN
+ are parallel. Then P depends only on the first variable.

5 Approximate solutions. Regularisation strategy

For the existence theory we shall embed the problem (P ) into a larger class of approximating, reg-
ularised problems that are easier to solve. These approximations (in the spirit of ’viscosity solutions’)
are constructed in such a way that the integrability of the entire vector of chemical potentials µ as main
variable can be expected.

5.1 The regularisation strategy

The regularisation strategy, though not mass conservative, will be chosen thermodynamically consis-
tent, since it consists in two essential steps:

(1) A positive definite regularisation of the mobility matrix M ;

(2) A convex regularisation of the free energy function h.

The method involves three levels associated with positive parameter, say σ, δ and τ . We first modify
the mobility matrix M in order to ensure ellipticity and allow a control on∇µ

Mσ(ρ) = M(ρ) + σ Id .

The δ−regularisation consists in increasing the growth of the (mechanical) free energy modifying the
function F that occurs in the definition of hmech via F (n · V )  F (n · V ) + δ (n · V )α, α > 3.
If the original growth exponent of F is larger than 3, this step can be omitted. We denote hδ the
corresponding free energy function, that is

hδ(ρ) := h(ρ) + δ
(
ρ · V

m

)α
. (41)

The τ−regularisation is a stabilisation for the vector of chemical potentials. It consists in modifying the
function h∗ (or (hδ)

∗) via

h∗δ,τ (X) := (hδ)
∗(X) + τ

N∑
i=1

ω(Xi) , (42)

Here ω ∈ C2(R) is a convex and increasing function for which we impose the growth conditions

c0 (
√
|s−|+ |s+|α′) ≤ ω′(s) s− ω(s) ≤ c1 (

√
|s−|+ |s+|α)

ω′(s) ≤ c2 (1 + ω′(s) s− ω(s))1/α

ω′′(s) ≤ c3 ω
′(s)

(43)
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For example, we may choose the function

ω(s) :=


−2
√
|s| for s ≤ −1

1
4
s2 + 3

2
s− 3

4
for − 1 < s < 1

1
2α′ (α′−1)

sα
′
+ (2− 1

2(α′−1)
) s+ 1

2α(α′−1)
− 1 otherwise .

which satisfies these assumptions. The choice of the regularisation ω is by no means unique, the
constants in the latter relation are determined from simple interpolation conditions. Essential for our
purposes is in fact only the sub linear growth for s → −∞ that guaranties convexity. The function
h∗τ,δ is twice differentiable and convex. Making use of the convexity we easily show that the mapping
∇h∗τ,δ : RN → RN

+ is bijective. Interpreting (42) as Legendre transform, we introduce a regularised
free energy function via

hτ,δ := convex conjugate of the function h∗τ,δ = (h∗τ,δ)
∗ , (44)

which is a twice differentiable convex function on RN
+ . The main motivation for this construction is that

the new free energy function has improved coercivity properties over the variables ρ and µ as exposed
in the following statement.

Lemma 5.1. Let the original free energy function h satisfy

c0 |ρ|α0 − c1 ≤ h(ρ) ≤ C0 |ρ|α0 + C1, for all ρ ∈ RN
+ .

with constants 3/2 < α0 < +∞ and 0 < c0, c1, C0, C1 < +∞. Let α > 3 be the regularisation
exponent of (41), and ω a function satisfying (43). Define

Φω(X) :=
N∑
i=1

ω′(Xi)Xi − ω(Xi) for X ∈ RN . (45)

Then there are c̃0, c̃1 > 0, and τ0(α, α0) > 0 such that if τ ≤ τ0

hτ,δ(ρ) ≥ c̃0 (|ρ|α0 + δ |ρ|α + τ Φω(µ))− c̃1

for all ρ ∈ RN
+ and µ ∈ RN connected by the identity ρ = ∇h∗τ,δ(µ).

Proof. The definition (44) implies that hτ,δ(∇h∗τ,δ(X)) = hδ(∇(hδ)
∗(X)) + τ Φω(X). By assump-

tion, ρ and µ are related via

ρ := ∇h∗τ,δ(µ) = ∇(hδ)
∗(µ) + τ ω′(µ) ,

and we obtain for the regularised free energy the identity

hτ,δ(ρ) = hδ(∇(hδ)
∗(µ)) + τ Φω(µ)

= hδ(ρ− τ ω′(µ)) + τ
N∑
i=1

(µi ω
′(µi)− ω(µi)) .

Using the properties of hδ(Y ) = h(Y ) + δ (Y · V
m

)α, we obtain that

hτ,δ(ρ) ≥ h(ρ− τ ω′(µ)) + δ ((ρ− τ ω′(µ)) · V
m

)α + τ
N∑
i=1

(µi ω
′(µi)− ω(µi)) .
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On the other hand, the condition (43) ensures that ω′(µi) ≤ c (1+ω′(µi)µi−ω(µi))
1/α. For α > 1,

denote c(α), c̄(α) two constants such that |a− b|α ≥ c(α) aα − c̄(α) bα for all a, b > 0. If follows
that

hτ,δ(ρ) ≥ h(ρ− τ ω′(µ)) + c2 δ |ρ− τ ω′(µ))|α + τ

N∑
i=1

(µi ω
′(µi)− ω(µi))

≥ h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α

+ τ
N∑
i=1

(µi ω
′(µi)− ω(µi))− c2 δ τ

α c(α) |ω′(µ)|α

= h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α

+ (1− c2 δ c(α) τα−1) τ
N∑
i=1

(µi ω
′(µi)− ω(µi))− C .

If we assume that C δ τα−1 ≤ 1/4, then

hτ,δ(ρ)

≥ h(ρ− τ ω′(µ)) + min{c2 δ, c(α)} |ρ|α +
3

4
τ

N∑
i=1

(µi ω
′(µi)− ω(µi))− C .

Making use of the growth of the free energy h and analogous arguments, the claim follows.

5.2 Approximation scheme

For the existence proof we embeds the problem (P ) into a larger class of (approximate) problems
(Pτ,σ,δ) characterised by an elliptic diffusion matrix Mσ and a regularised free energy hτ,δ. Since in
this approach it is possible to control the entire vector µ, a solution vector consists of the entries µ, v
and φ.

In order to define the concept of solution, we introduce also in this case a natural class B for the
approximate solutions. If δ, σ, τ > 0, we say that (µ, v, φ) belongs to B(T, Ω, α, N, Ψ, ΨΓ) if
and only if

(%, q, v, φ, R, RΓ) ∈ B(T, Ω, α, N − 1, Ψ, ΨΓ)

with % := ∇h∗τ,δ(µ) · 1 and q := Πµ,

Rk = R̄k(D
R), DR

k := γk · µ for k = 1, . . . , s,

RΓ
k = R̂Γ

k (t, x, D̂Γ,R), D̂Γ,R
k := γ̂k · µ for k = 1, . . . , ŝΓ

µ ∈ W 1,0
2 (Q; RN) .

(46)

We say that (µ, v, φ) satisfies the approximate energy (in)equality if and only if the corresponding
vector (%, q, v, φ, R, RΓ) satisfies the energy (in)equality (23), with free energy function hτ,δ and
mobility matrix Mσ. For δ > 0, σ > 0 and τ ≥ 0 we call weak solution to the problem (Pτ, σ, δ) a
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Improved Nernst–Planck–Poisson systems. Part II 17

vector (µ, v, φ) ∈ B subject to the energy inequality and such that the quantities

ρ = ∇h∗τ,δ(µ)

J = −Mσ(ρ)D, D :=
∇µ
θ

+
1

θ

z

m
∇φ

r =
s∑

k=1

γ̂k R̄k(D
R), DR = (γ1 · µ, . . . , γs · µ)

r̂ =
ŝΓ∑
k=1

γ̂k R̂Γ
k (t, x, D̂Γ,R), D̂Γ,R = (γ̂1 · µ, . . . , γ̂ ŝΓ · µ)

p = h∗τ,δ(µ)

nF = ρ · z
m

(47)

satisfy the identities (25), (27), and instead of (26)

−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η −
∫
Q

p div η +

∫
Q

S(∇v) : ∇η (48)

=

∫
Ω

%0 v
0 · η(0)−

∫
Q

nF ∇φ · η −
∫
Q

(
N∑
i=1

J i · ∇)η · v ∀η ∈ C1
c ([0, T [; C1

c (Ω;R3)) .

Since the definitions (47) imply that
∑N

i=1 J
i 6= 0, it is necessary to add this term in the momentum

equation (48) in order to preserve the energy identity.

6 Derivation of the global energy and mass balance identities

In this section we derive the energy identity naturally associated with the problem (P ). In the context
of its thermodynamically consistent approximations (Pτ,σ,δ), the increased regularity of the solution is
sufficient to derive an identity.

Proposition 6.1. Assume that there are vector fields µ ∈ C0,1([0, T ]×Ω; RN), v ∈ C0,1([0, T ]×
Ω; R3) and φ ∈ L∞([0, T ]; C0,1(Ω)) that satisfy together with their associate variables ρ, J , r, r̂,
p, nF defined in (47) the relations (25), (48), (27) together with the conditions

µ(0) = µ0 ∈ C0,1(Ω; RN), v(0) = v0 ∈ C0,1(Ω; R3) in Ω

φ = φ0 ∈ C0,1([0, T ]× Ω)) on ]0, T [×Γ, v = 0 on [0, T ]× ∂Ω .
(49)

We define ρ0 = ∇h∗τ,δ(µ0). Then, for all t ∈]0, T [, the vector (µ, v, φ) satisfies the approximate
energy equality, that is, it satisfies the energy equality (23) with free energy function hτ,δ and mobility
matrix Mσ.
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Proof. Due to the additional regularity assumed, it is fairly standard to show that∫
Ω

∂tρ · ψ −
∫

Ω

(ρi v + J i) · ∇ψi =

∫
Ω

r · ψ +

∫
Γ

(r̂ + J0) · ψ (50)∫
Ω

% ∂tv · η +

∫
Ω

% (v · ∇)v · η +

∫
Ω

S(∇v) : ∇η −
∫

Ω

p div η

= −
∫

Ω

(
N∑
i=1

J i · ∇)v · η −
∫

Ω

nF ∇φ · η (51)

ε0 (1 + χ)

∫
Ω

∇φ · ∇ζ =

∫
Ω

nF ζ , (52)

for all ψ ∈ W 1,1(Ω; RN), all η ∈ W 1,1
0 (Ω; R3) and for all ζ ∈ W 1,1

Γ (Ω).

We choose ψ = µ(t) in (50). The Lemma 4.4 implies that
∑N

i=1 ρi∇µi = ∇h∗τ,δ(µ) = ∇p.
Moreover, the definition of ρ yields µ = ∇hτ,δ(ρ) and therefore ∂tρ · µ = ∂thτ,δ(ρ). It follows that

∂t

∫
Ω

hτ,δ(ρ)−
∫

Ω

(
v · ∇p+

N∑
i=1

J i · ∇µi

)
=

∫
Ω

r · µ+

∫
Γ

(r̂ + J0) · µ . (53)

We choose ψ = z
m
φ in (50). Recall that r · z

m
= 0, because γk · z

m
= 0 for every reaction vector

(atomic charge conservation). Thus∫
Ω

∂tn
F φ−

∫
Ω

(
nF v · ∇φ+

N∑
i=1

J i
zi
mi

· ∇φ

)
=

∫
Γ

(r̂ + J0) · z
m
φ0 . (54)

We differentiate (52) in time, and we choose ζ = φ(t)− φ0(t), This entails∫
Ω

nFt φ =

∫
Ω

nFt φ0 +
ε0 (1 + χ)

2
∂t

∫
Ω

|∇φ|2 − ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 . (55)

Thus, (54) and (55) yield

ε0 (1 + χ)

2
∂t

∫
Ω

|∇φ|2 −
∫

Ω

(
nF v · ∇φ+

N∑
i=1

J i
zi
mi

· ∇φ

)
=

∫
Γ

(r̂ + J0) · z
m
φ0 + ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 . (56)

If we now add (56) to (53), it follows that

∂t

∫
Ω

{hτ,δ(ρ) +
ε0 (1 + χ)

2
|∇φ|2} −

∫
Ω

v · (∇p+ nF ∇φ)

−
∫

Ω

N∑
i=1

J i · (∇µi + zi
mi
· ∇φ)−

∫
Ω

r · µ−
∫

Γ

r̂ · µ

=

∫
Γ

(J0 · µ+ (J0 + r̂) · z
m
φ0) + ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 . (57)

Next we choose η = v(t) in (51), which shows that

1

2

∫
Ω

(% ∂tv
2 + % (v · ∇)v2) +

∫
Ω

S(∇v) : ∇v

+

∫
Ω

v · (∇p+ nF ∇φ) = −1

2

∫
Ω

N∑
i=1

J i · ∇v2 . (58)
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For ψ = v2 1 in (50), observing that r ·1 = 0 = r̂ ·1 by definition, it follows that
∫

Ω
∂t% v

2−
∫

Ω
(% v+∑N

i=1 J
i) · ∇v2 = 0, which directly entails

∫
Ω

% ∂tv
2 +

∫
Ω

% v · ∇v2 +

∫
Ω

N∑
i=1

J i · ∇v2 = ∂t

∫
Ω

% v2 , (59)

Thus (58) yields

1

2
∂t

∫
Ω

% v2 +

∫
Ω

S(∇v) : ∇v +

∫
Ω

v · (∇p+ nF ∇φ) = 0 . (60)

We add (60) to (57):

∂t

∫
Ω

{1

2
% v2 + hτ,δ(ρ) +

ε0 (1 + χ)

2
|∇φ|2}+

∫
Ω

S(∇v) : ∇v

−
∫

Ω

θ J ·D −
∫

Ω

r · µ−
∫

Γ

r̂ · µ

=

∫
Γ

(J0 · µ+ (J0 + r̂) · z
m
φ0) + ε0 (1 + χ)

∫
Ω

∇φt · ∇φ0 −
∫

Ω

nFt φ0 .

We integrate over time and are done.

The proof of the global mass conservation identities is comparatively simpler. It suffices to insert
ψ = ei for i = 1, . . . , N into (50).

Proposition 6.2. Assumptions of Proposition 6.1. Then for all t ∈ [0, T ]

ρ̄(t) = ρ̄0 +

∫ t

0

{∫
Ω

r +

∫
Γ

(r̂ + J0)

}
(s) ds .

7 A priori estimates directly resulting from the energy equality

In this section we derive a priori estimates on solutions to the problem (P ) that result from the energy
identity. In order to include in our considerations both approximation scheme and limit problem, we
here consider generic free energy functions satisfying the following growth assumption: There are
c1 > 0, c2 ≥ 0 and Ci ≥ 0, i = 1, 2, 3 and τ > 0 such that for all ρ ∈ RN

+

c1 |ρ|α + τ Φω[∇h(ρ)]− c2 ≤ h(ρ) ≤ C1 |ρ|α + C2 τ Φω[∇h(ρ)] + C3 . (61)

Moreover we consider mobility matrices Mσ = M(ρ) + σ Id, σ ≥ 0, such that M satisfies (13) and
(14). We commence with a few standard estimates.

Proposition 7.1. Let (%, q, v, φ, R, RΓ) satisfy the energy inequality (23) with free energy func-
tion h satisfying (61) and mobility matrix M satisfying (13), (14). Then, there is a number C0 > 0
depending only on Ω, on the constants ci, Ci in the conditions (61), and on the quantity

B0 := ‖ρ0‖Lα(Ω) + τ ‖Φω(µ0)‖L1(Ω) + ‖√%0 v
0‖L2(Ω) + ‖φ0‖L∞(Q)

+ ‖φ0‖L∞(0,T ;W 1,2(Ω)) + ‖φ0,t‖W 1,0
2 (Q) + ‖φ0,t‖Lα′ (Q) + ‖‖L∞(S;RŝΓ ) ,

(62)
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such that

‖ρ‖L∞,α(Q) + τ ‖Φω(µ)‖L∞,1(Q) + ‖√% v‖L∞,2(Q) + ‖∇φ‖L∞,2(Q) ≤ C0

‖v‖W 1,0
2 (Q) + ‖∇q‖L2(Q) ≤ C0

‖DR‖LΨ(Q) + ‖D̂Γ,R‖L
Ψ̂Γ (S) ≤ C0

N∑
i=1

‖J i‖
L

2, 2α
1+α (Q)

+ [−R]LΨ∗ (Q) + [−RΓ]L
(Ψ̂Γ)∗ (S) ≤ C0

√
σ ‖∇µ‖L2(Q) + min{σ, τ 2} ‖µ‖L2,3(Q) ≤ C0

‖1 · J‖L2(Q) ≤ C0

√
σ, ‖τ ω′(µ)‖L∞,α(Q) ≤ C0 τ

1/α′ .

Here the quantities ρ, J , etc. obey the definitions (22) or (47).

Proof. Due to the assumption (61)∫
Ω

h(ρ)(t) ≥ c1

∫
Ω

|ρ(t)|α + τ

∫
Ω

Φω(µ(t))− c2 |Ω| .

For general velocity fields v ∈ W 1,2(Ω; R3)∫
Ω

S(∇v) : ∇v =

∫
Ω

η

4
|D(v)− 2

3
div v Id|2 +

∫
Ω

(λ+
2

3
η) (div v)2 .

In the case that v = 0 on ∂Ω∫
Ω

S(∇v) : ∇v =

∫
Ω

(η |∇v|2 + (λ+ η) (div v)2) .

For estimating the right hand of the energy identity∣∣∣∣∫
Ω

nF (t)φ0(t)

∣∣∣∣ ≤ ∣∣ zm ∣∣ ∫
Ω

|ρ| |φ0(t)| ≤ c1

2

∫
Ω

|ρ|α + c

∫
Ω

|φ0|α
′

∣∣∣∣ε0 (1 + χ)

∫
Ω

∇φ · ∇φ0

∣∣∣∣ ≤ ε0 (1 + χ)

4

∫
Ω

|∇φ(t)|2 + c

∫
Ω

|∇φ0|2 .

Owing to similar standard considerations∣∣∣∣∫
Qt

{nF φ0,t − ε0 (1 + χ)∇φ · ∇φ0,t}
∣∣∣∣

≤
∫ t

0

{‖nF‖Lα(Ω) ‖φ0,t‖Lα′ (Ω) + ε0 (1 + χ) ‖∇φ‖L2(Ω) ‖∇φ0,t‖L2(Ω)}

≤
∫ t

0

{‖nF‖αLα(Ω) + ε0 (1 + χ) ‖∇φ‖2
L2(Ω)}

+ C

∫ t

0

{‖φ0,t‖α
′

Lα′ (Ω)
+ ‖∇φ0,t‖2

L2(Ω)} .

The Young inequality further implies that

−
∫
St

RΓ
k γ̂

k · z
m
φ0 ≤

∫
St

(Ψ̂Γ)∗(t, x, −1
4
RΓ)

+

∫
St

Ψ̂Γ(t, x, 4φ0 (γ̂1 · z
m
, . . . , γ̂ ŝ

Γ · z
m

)) .
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Since (Ψ̂Γ)∗(t, x, −1
4
RΓ) = (Ψ̂Γ)∗(t, x, 1

4
(−RΓ) + 3

4
0), convexity implies that

−
∫
St

RΓ
k γ̂

k · z
m
φ0 ≤

1

4

∫
St

(Ψ̂Γ)∗(t, x, −RΓ)

+

∫
St

Ψ̂Γ(t, x, 4φ0 (γ̂1 · z
m
, . . . , γ̂ ŝ

Γ · z
m

))

=
1

4

∫
St

(Ψ̂Γ)∗(t, x, −RΓ) + C0(‖φ0‖L∞([0,T ]×Γ)) .

Recall that J0 possesses a representation J0 =
∑ŝΓ

k=1 k γ̂
k, and therefore∫

St

J0 · µ ≤
∫
St

Ψ̂Γ(t, x, 1
4
D̂Γ,R) +

∫
St

(Ψ̂Γ)∗(t, x, 4 )

≤ 1

4

∫
St

Ψ̂Γ(t, x, D̂Γ,R) + C0(‖‖L∞(S)) .

Due to convex duality

Ψ(DR) + (Ψ)∗(−R̄(DR)) = −
s∑

k=1

R̄k(D
R) γk · µ

Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −R̄Γ(t, x, D̂Γ,R)) = −
ŝΓ∑
k=1

R̄Γ
k (t, x, D̂Γ,R) γ̂k · µ .

Thus, for all t ∈]0, T [, the dissipation inequality implies that∫
Ω

{
1

2
% v2 +

ε0 (1 + χ)

4
|∇φ|2 +

c1

2
|ρ|α + τ Φω(µ)

}
(t)

+

∫
Qt

{
η |∇v|2 + (λ+ η) (div v)2 − θ

N∑
i=1

J i ·Di + (Ψ(DR) + (Ψ)∗(−R))

}
+

1

2

∫
St

{Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −RΓ)}

≤ C0 + C

∫ t

0

{‖ρ‖αLα(Ω) + ε0 (1 + χ) ‖∇φ‖2
L2(Ω)}

Owing to the thermodynamical consistency, we (at least) obtain that
∑N

i=1 J
i · Di ≤ 0. Moreover,

λ + 2
3
η ≥ 0 implies S(∇v) : ∇v ≥ 0. Exploiting the Gronwall Lemma, we thus obtain bounds for

the quantities ‖√% v‖L∞,2(Q), ‖∇φ‖L∞,2(Q) and ‖ρ‖L∞,α(Q) and τ ‖Φω(µ)‖L∞,1(Q) . It next follows
that ∫

Ω

{
1

2
% v2 +

1

4
ε0 (1 + χ) |∇φ|2 +

c1

2
|ρ|α + τ Φω(µ)

}
(t)

+

∫
Qt

{
η |∇v|2 + (λ+ η) (div v)2 − θ

N∑
i=1

J i ·Di + (Ψ(DR) + (Ψ)∗(−R))

}
+

1

2

∫
St

{Ψ̂Γ(t, x, D̂Γ,R) + (Ψ̂Γ)∗(t, x, −RΓ)} ≤ C0(T ) .
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Since λ + 2
3
η ≥ 0 this in turn implies bounds for ‖ div v‖L2(Q), and for ‖∇v‖L2(Q). Moreover the

production factors R and RΓ are bounded in Orlicz classes

[−R]L(Ψ)∗ (Q;Rs) + [−RΓ]L
(Ψ̂Γ)∗ (ST ;RŝΓ ) ≤ C0 .

whereas the reaction driving forces satisfy

[DR]LΨ(Q;Rs) + [D̂Γ,R]L
Ψ̂Γ (ST ;RŝΓ ) ≤ C0 .

It remains to exploit the dissipation due to diffusion and the driving forces D1, . . . , DN . At first we
note that−θ

∑N
i=1 J

i ·Di = θ
∑

i,jMi,j D
i ·Dj . For i = 1, . . . , N the Cauchy-Schwarz inequality

and the growth condition (14) on M (or Mσ) imply that

|J i| = |
N∑
j=1

Mi,j D
j| ≤ (MD ·D)1/2 (Mei · ei)1/2

≤ (
√
σ +

√
λ) (1 + |ρ|)1/2 (MD ·D)1/2 .

Therefore, we obtain for the diffusion fluxes that

‖J i(t)‖
L

2α
1+α (Ω)

≤ c ‖MD ·D(t)‖1/2

L1(Ω) (1 + ‖ρ(t)‖1/2
Lα(Ω))

≤ C0 ‖MD ·D(t)‖1/2

L1(Ω) .

It follows that ‖J i‖
L

2, 2α
1+α (Q)

≤ c
(∫

Q
MD ·D

)1/2

≤ C0.

We finally want to obtain estimates on the gradients of the (relative) chemical potentials. Here we
make use of the assumption (14) that yields

−θ
N∑
i=1

J i ·Di = θ
N∑

i,j=1

Mi,j D
i ·Dj ≥ θ λ |P1⊥ D|2 .

Here P1⊥ the orthogonal projection on the space 1⊥. Splitting the driving force Di = θ−1 (∇µi +
zi
mi
∇φ), we can obtain that

−θ
N∑
i=1

J i ·Di ≥ λ

2 θ
|P1⊥∇µ|2 −

3λ

θ

∣∣∣ z
m

∣∣∣2 |∇φ|2 .
We make use of the identity P1⊥µ =

∑N−1
i=1 qi P1⊥ξ

i. Due to the choice of ξ1, . . . , ξN−1, the vectors
P1⊥ξ

1, . . . , P1⊥ξ
N−1 are a basis of 1⊥. Thus, there is a constant depending only on the choice of the

projector Π such that |P1⊥∇µ|2 ≥ cΠ |∇q|2. This entails |∇q|2 ≤ c (−θ2
∑N

i=1 J
i ·Di + |∇φ|2),

proving that ‖∇q‖L2(Q) ≤ C0. Since MσD ·D ≥ σD2

C0 ≥ −θ2

N∑
i=1

∫
Q

J i ·Di ≥ σ

2

∫
Q

|∇µ|2 − 3σ
∣∣ z
m

∣∣ ‖∇φ‖2
L2(Q) ,

which yields the bound for
√
σ ‖∇µ‖L2(Q). Finally

‖1 · J‖L2(Q) = σ ‖1 ·D‖L2(Q) ≤ c
√
σ (
√
σ ‖∇µ‖L2(Q) +

√
σ ‖∇φ‖L2(Q)) .
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Due to the conditions (43), we verify that |ω′|α ≤ (1 + Φω) and this directly yields

‖τ ω′(µ)‖L∞,α(Q) ≤ τ 1/α′ ‖τ Φω(µ)‖L∞,1(Q) ≤ τ 1/α′ C0 .

At last we can verify, making use of the growth property of Φω that the function w =
√

1 + |µ|
possesses a distributional gradient in L2(Q) and is bounded in L∞,1(Q) via

‖∇w‖L2(Q) ≤
1

2
‖∇µ‖L2(Q) ≤ C0 σ

−1/2,

‖w‖L∞,1(Q) ≤ |Ω|+ ‖
√
|µ|‖L∞,1(Q) ≤ |Ω|+ ‖Φω(µ)‖L∞,1(Q) ≤ C0 τ

−1 .

Thus, ‖w‖L2,6(Q) ≤ Cσ,τ .

Lemma 7.2. Assumptions of Proposition 7.1. Assume moreover that for almost all t ∈]0, T [, the
electrical potential φ ∈ L∞(0, T ; W 1,2(Ω)) satisfies

−ε0 (1 + χ)4φ(t) = nF (t) in [W 1,2
Γ (Ω)]∗, φ(t) = φ0(t) as traces on Γ ,

with φ0 ∈ L∞(Q) ∩ L∞(0, T ; W 1,β(Ω)), β = min{r(Ω, Γ), 3α
(3−α)+}. Then

‖φ‖L∞(Q) ≤ ‖φ0‖L∞(Q) + c ‖ρ‖L∞,α(Q)

‖φ‖L∞(0,T ;W 1,β(Ω)) ≤ c (‖φ0‖L∞(0,T ;W 1,β(Ω)) + ‖ρ‖L∞,α(Q)) .
(63)

Moreover, if β ≥ α′

‖nF ∇φ‖
L
∞, βα

β+α (Q)
≤ ‖nF‖L∞,α(Q) ‖∇φ‖L∞,β(Q) . (64)

Proof. We only need to recall that α > 3/2 and the definition of the exponent r(Ω,Γ) ≥ 2 (see (18)).
The estimates (63) are standard consequences of second order elliptic theory, whereas (64) follows
from the Hölder inequality.

Next we can derive the uniform continuity estimate that results from the mass balance equations.

Proposition 7.3. Assumptions of Proposition 7.1. If ρ̄ satisfies the identity of Definition (24), then
[ρ̄]CΦ∗ ([0,T ]) ≤ C0.

Proof. Let 0 ≤ t1 < t2 ≤ T . Note that by assumption ρ̄(t2) − ρ̄(t1) =
∫ t2
t1
{
∫

Ω
r +

∫
Γ
(r̂ + J0)}.

We note that ∣∣∣∣∫ t2

t1

∫
Ω

ri

∣∣∣∣ =

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣ ≤ sup

i=1,...,N, [−R]LΨ∗≤C0

∣∣∣∣∫ t2

t1

∫
Ω

R · γi
∣∣∣∣ .

We argue similarly with the other right-hand side terms. Recall the definition of the natural class B to
show that |ρ̄(t2)− ρ̄(t1)| ≤ C̄0 Φ∗(t1, t2).

In the course of the proofs, we shall also need bounds of more technical nature obtained via Hölder
and Sobolev inequalities. We denote α the growth exponent of the function h at infinity and β :=
min{r(Ω, Γ), 3α

(3−α)+} the optimal regularity of the electric field.
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Lemma 7.4. We assume that the bounds in the Proposition 7.1 and Lemma 7.2 are valid. Then

‖% v‖
L

2, 6α
6+α (Q)

≤ c ‖%‖L∞,α(Q) ‖v‖W 1,0
2 (Q) ≤ C0

‖% v‖
L
∞, 2α

1+α (Q)
≤ ‖√% v‖L∞,2(Q) ‖%‖1/2

L∞,α(Q) ≤ C0

‖% v2‖
L

1, 3α
3+α (Q)

≤ c ‖%‖L∞,α(Q) ‖v‖2
W 1,0

2 (Q)
≤ C0

‖% v2‖
L

5α−3
3α (Q)

≤ c ‖% v2‖(2α−3)/(3α)

L∞,1(Q) ‖% v2‖(3+α)/(3α)

L
1, 3α

3+α (Q)
≤ C0∥∥∥∥∥

N∑
i=1

J i v

∥∥∥∥∥
L1,3/2(Q)

≤

∥∥∥∥∥
N∑
i=1

J i

∥∥∥∥∥
L2(Q)

‖v‖L2,6(Q) ≤ C0

√
σ .

Further we shall need an improved bound on the pressure. This is also fairly standard, and therefore
we give the proof in the Appendix.

Lemma 7.5. Assume that the relation (25) is valid:

� If α > 3, then ‖p‖L1+1/α(Q) ≤ C0;

� If 3/2 < α ≤ 3, r(Ω, Γ) > α′ and 1 · J ≡ 0, then ‖p‖
L1+ 2

3−
1
α (Q)
≤ C0.

The only piece of information still missing in order to obtain a bound in the natural class is the estimate
on the vector q. This is the object of the next section.

8 A priori estimates for the (relative) chemical potentials

In this section we show that a combination between the estimates on the reaction driving forces
DR, DΓ,R and the control on the gradient of the relative potentials (q1, . . . , qN−1) = Πµ (cf. Propo-
sition 7.1) and the balance of total mass (Proposition 6.2) allows a control in time on the L2−norm of
these functions in the sense of the natural class B.

The starting point is a given pair (%, q) ∈ L∞,α(Q)× L1(Q; RN−1). We define ρ := R(%, q), and
µ := Eq if |q| is finite. An essential ingredient of the proof is the balance of total mass valid for all
t ∈]0, T [ implying

ρ̄(t) ∈ {ρ̄0} ⊕ span{γ1, . . . , γs, γ̂1, . . . , γ̂ ŝ
Γ} =: {ρ̄0} ⊕W . (65)

At every point where % > 0, we may resort to the representations

∂ih(ρ) = ci +K
Vi
mi

F ′(ρ · V
m

) + kB θ
1

mi

ln yi (66)

µi − µk = Eq · (ei − ek) = (Eq + M (%, q)1) · (ei − ek) (67)

= ci − ck +K
(
Vi
mi
− Vk

mk

)
F ′(ρ · V

m
) + kB θ

(
1
mi

ln yi − 1
mk

ln yk

)
.

Let s̃ := dimW and b1, . . . , bs̃ ∈ W be a basis of W (0 ≤ s̃ ≤ s).

We call a selection S ⊆ {1, . . . , N} critical if the span of the vectors PS(b1), . . . , PS(bs̃) is a true
subspace of PS(RN). The manifold WS := span{PS(b1), . . . , PS(bs̃)} ⊕ PSc(RN) has at most
dimension N − 1.

The critical manifold was first introduced in the paper [DDGG16] and is defined via (29). We commence
stating an obvious estimate, that results from the Proposition 7.1.
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Lemma 8.1. Define PW : RN → W the orthogonal projection on the subspace W . There is C
depending only on Ω such that

‖PWµ‖L2(Q) + ‖PWµ‖L2(S)

≤ C (1 + ‖∇q‖L2(Q) + [DR]LΨ(Q) + [D̂Γ,R]L
Ψ̂Γ (S)) .

Proof. Consider at first a vector γk ∈ RN , k ∈ {1, . . . , s} associated with the bulk reactions.
Since we assume at least quadratic growth of the potential Ψ (17), then obviously ‖µ · γk‖L2(Ω) ≤
[DR]LΨ(Ω;Rs). By assumption, γk ·1 = 0 for all k. This means that there is a constant cW,Π depending
on W and the choice of the projector Π such that |∇(γk · µ)| ≤ cW,Π |∇Πµ|. We also obtain (trace
theorem) that ‖µ · γk‖L2(Γ) ≤ C ‖µ · γk‖W 1,2(Ω). Thus

‖µ · γk‖L2(S) ≤ C (‖∇Πµ‖L2(Q;R(N−1)×3) + ‖DR‖L2(Q;Rs))

≤ C (‖∇Πµ‖L2(Q;R(N−1)×3) + cΨ [DR]LΨ(Q;Rs)) ≤ C0 .

For k ∈ {1, . . . , ŝΓ}, we analogously observe that |µ · γ̂k| ≤ |D̂Γ,R| which is bounded by the
data in LΨ̂Γ and therefore in L2(]0, T [×Γ) (17). We make use of the fact that ‖µ · γ̂k‖L2(Ω) ≤
C (‖∇(µ · γ̂k)‖L2(Ω) + ‖µ · γ̂k‖L2(]0,T [×Γ)), and the claim follows.

As a preliminary tool to the main estimate of this section, we have the following Lemma.

Lemma 8.2. Let ε > 0. For u ∈ L1(Ω), define

Aε(u) := {x ∈ Ω : u(x) < ε−1}, Bε(u) := {x ∈ Ω : u(x) > −ε−1} .

For δ > 0, there is C∗ = C∗(δ) depending only on Ω such that for all u ∈ W 1,1(Ω)

min{λ3(Aε(u)), λ3(Bε(u))} ≥ δ

implies that

‖u‖L1(Ω) ≤ C∗(δ) (‖∇u‖L1(Ω) + 1
ε

max{λ3(Aε(u)), λ3(Bε(u))}) .

Proof. We at first show that for all δ > 0, there is c = c(δ) depending only on Ω such that

‖u‖L1(Ω) ≤ c(δ)

(
‖∇u‖L1(Ω) + max

{∫
A

|u+|,
∫
B

|u−|
})

(68)

for all u ∈ W 1,1(Ω), for all A, B ⊂ Ω such that min{|A|, |B|} ≥ δ .

Otherwise, there is δ0 > 0 such that for all j ∈ N, one finds uj ∈ W 1,1(Ω) and Aj, Bj ⊂ Ω,
|Aj|, |Bj| ≥ δ0 and

‖uj‖L1(Ω) ≥ j

(
‖∇uj‖L1(Ω) + max

{∫
Aj

|u+
j |,
∫
Bj

|u−j |

})
.

Consider ūj := uj/‖uj‖L1(Ω). Then, ‖ūj‖W 1,1(Ω) ≤ ‖∇ūj‖L1(Ω) + 1 ≤ j−1 + 1. Consequently,
there are a subsequence (no new labels) and a limiting element ū ∈ L1(Ω) such that ūj → ū
strongly in L1(Ω). But since∇ūj → 0 strongly in L1(Ω), ūmust be a constant. Since also ū+ |Aj|+
|ū−| |Bj| → 0, it obviously follows that ū ≡ 0. Thus 1 = ‖ūj‖L1(Ω) → 0, a contradiction.
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For u ∈ L1(Ω), we apply (68) with the choices

A := {x ∈ Ω : u(x) < ε−1}, B := {x ∈ Ω : u(x) > −ε−1} .

It follows that either min{|A|, |B|} < δ or that

‖u‖L1(Ω) ≤ c(δ)

(
‖∇u‖L1(Ω) + max

{∫
A

|u+|,
∫
B

|u−|
})

≤ c(δ) (‖∇u‖L1(Ω) +
1

ε
max {|A|, |B|}) .

We now prove the main result 3.1. First we recall the statement.

Theorem 8.3. Assume that ρ̄(t) ∈ {ρ̄0} ⊕W for all t ∈ [0, T ]. Let s̃ := dimW and b1, . . . , bs̃ be
a basis of W . Then, if dist(ρ̄0,Mcrit) > 0, the estimate

‖q‖L2(Q;RN−1) ≤ c (k0 T
1
2 + ‖b1 · µ, . . . , bs̃ · µ)‖L2(Q;Rs̃) + c∗0 ‖∇q‖L2(Q;R(N−1)×3)) ,

is valid, where c∗0 and k0 depend on dist(ρ̄0,Mcrit).

Proof. For t ∈]0, T [, we define r0(t) :=
∑s̃

k=1 ‖bk · µ(t)‖L1(Ω), and d0(t) := ‖∇q(t)‖L1(Ω).

Preliminary: Consider for i = 1, . . . , N the function q̂i := µi − maxj=1,...,N µj . Then q̂ ≤ 0
componentwise.

Moreover q̂i possesses the generalised gradient∇q̂i =
∑N

i0=1∇(µi − µi0)χBi0 where the set Bi0

obeys the definition Bi0 := {x ∈ Ω : µi0 = maxj=1,...,N µj}. Recall that for all i 6= i0, the vector
ei − ei0 belongs to span{ξ1, . . . , ξN−1}. Therefore, we can show that∫

Ω

|∇q̂i(t)| =
N∑
i0=1

∫
Bi0

|∇(µi − µi0)(t)| ≤ c
N∑
i0=1

∫
Bi0

|∇q(t)|

= c d0(t) .

First step: Now, exploiting Lemma 8.2 with u = q̂i (recall that q̂+
i = 0 for i = 1, . . . , N ), we obtain

for δ, ε > 0 and t ∈]0, T [ the alternative
‖q̂i(t)‖L1(Ω) ≤ C∗(δ) (d0(t) + ε−1 λ3(Ω))

or

λ3({x : q̂i(t, x) ≥ −1
ε
}) < δ .

(69)

Due to the definitions of q̂, i0 and (67), there holds in Bi0 ⊆ Ω

q̂i = ci − ci0 + ( Vi
mi
− Vi0

mi0
)F ′( V

m
· ρ) + kB θ ( 1

mi
ln yi − 1

mi0
ln yi0) .

Thus

ln yi ≤ mi
mi0

ln yi0 + mi
kB θ

(q̂i + 2 |c|∞ + sup
j,k=1,...N

| Vj
mj
− Vk

mk
|F ′( V

m
· ρ)) . (70)
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We define ε0 := 1
8 |c|∞ , a0 := supj,k=1,...N |

Vj
mj
− Vk

mk
|, and for ε > 0 and t ∈]0, T [

Aε(t) := {x : |F ′( V
m
· ρ(t, x))| ≤ 1

4a0ε
} .

Due to the inequality (70), the set inclusion

{x : q̂i(t, x) < −1
ε
} ∩ Aε(t) ⊆ {x : yi(t, x) ≤ e

− mi
2 kB θ ε} (71)

is valid. We next observe that the set Ω \ Aε(t) can be decomposed via

Ω \ Aε(t) = C+
ε (t) ∪ C−ε (t)

C−ε (t) := {x : F ′( V
m
· ρ(t, x)) ≤ − 1

4a0ε
}

C+
ε (t) := {x : F ′( V

m
· ρ(t, x)) ≥ 1

4a0ε
}

Due to the asymptotic behaviour of the function F ′ (see (12)), there are ε1 > 0 and k̄1, k̄2 > 0
depending only on F and a0 such that

x ∈ C−ε (t)⇒ ln( V
m
· ρ(t, x)) ≤ − k̄1

ε

x ∈ C+
ε (t)⇒ ( V

m
· ρ(t, x))α−1 ≥ k̄2

ε
.

In particular, it follows that

C−ε ⊆ {x : max
i=1,...,N

ρi(t, x) ≤ 1

mini=1,...,N
Vi
mi

e−
k̄1

ε } , (72)

Thus, invoking (71) and (72) we obtain that

{x : q̂i(t, x) < −1
ε
} ∩ (Ω \ C+

ε (t))

⊆ {x : yi(t, x) ≤ e
− mi

2 kB θ ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε } . (73)

Here m := maxi=1,...,N mi and V := mini=1,...,N Vi. On the other hand we readily see that

λ3(C+
ε (t)) ≤ ‖%‖αL∞,α(Q) sup

i=1,...,N
( Vi
mi

)α
(
ε

k̄2

)α′
. (74)

Thus, if λ3({x : q̂i(t, x) ≥ −1
ε
}) ≤ δ, we can invoke (73) and (74) to see that

λ3({x : yi(t, x) ≤ e
− mi

2 kB θ, ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε })

≥ λ3(Ω)− δ − ‖%‖αL∞,α(Q) ( V
m

)α
(
ε

k̄2

)α′
.

For all 0 < ε < min{ε0, ε1} and 0 < δ, we therefore obtain from the latter and (69) that

‖q̂i(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1 λ3(Ω))

implies

λ3({x : yi(t, x) ≤ e
− mi

2 kB θ ε} ∪ {x : max
i=1,...,N

ρi(t, x) ≤ m
V
e−

k̄1

ε }) ≥ λ3(Ω)− δ − C0 ε
α′ .
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We further note that∫
Ω

ρi(t) ≤
∫
{x : yi(t,x)≤e

−
mi

2 kB θ ε }
ρi +

∫
{x : maxi=1,...,N ρi(t,x)≤m

V
e
−
k1

ε }
ρi

+ ‖ρi‖L∞,α(Q) (δ + C0 ε
α′)

1
α′

≤mi e
− mi

2 kB θ ε ‖n‖L∞,1(Ω) + m
V
e−

k̄1

ε λ3(Ω) + ‖ρi‖L∞,α(Q) (δ + C0 ε
α′)

1
α′ .

For all 0 < ε < min{ε0, ε1} and 0 < δ, we therefore obtain that

‖q̂i(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1λ3(Ω))

implies (75)

ρ̄i(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε }) ,

where C0, C1 are certain constants depending on the data.

Second step: Let t ∈]0, T [. Consider i1 ∈ {1, . . . , N}. Then, we claim that there are constants
c0, c1 > 0 depending only on the vectors b1, . . . , bs̃ and a critical index set J ⊃ {i1} such that

inf
j∈J
‖q̂j(t)‖L1(Ω) ≥ c0 (‖q̂i1(t)‖L1(Ω) − c1 r0(t)) . (76)

We prove this inductively. Suppose that K ⊂ {1, . . . , N} is any non-critical index set. Then, by
definition, there are for all k ∈ K coefficients λk1, . . . , λ

k
s̃ such that

PK(ek) =
s̃∑
`=1

λk` PK(b`) =
s̃∑
`=1

λk` b
` −

s̃∑
`=1

λk` PKc(b`) .

Thus, elemetarily

‖q̂k‖L1(Ω) ≤ sup
`=1,...,s̃

|λk` | (r0(t) + s̃ sup
`=1,...,s̃

|b`|∞ max
j∈Kc
‖q̂j‖L1(Ω)) .

Choosing k ∈ K such that ‖q̂k‖L1(Ω) = maxj∈K ‖q̂j‖L1(Ω) and ` ∈ Kc such that maxj∈Kc ‖q̂j‖L1(Ω) =
‖q̂`‖L1(Ω) it follows that

max
j∈K∪{`}

‖q̂j‖L1(Ω) ≥ 1
s̃ |b|∞ |λ|∞ (max

j∈K
‖q̂j‖L1(Ω) − |λ|∞ r0(t)) .

Applying this iteratively, we prove the subclaim (76). Now, assume that for parameters 0 < ε < ε0
and 0 < δ, the inequality

‖q̂i1(t)‖L1(Ω) >
1
c0

(C∗(δ) (d0(t) + ε−1 λ3(Ω)) + c1 r0(t))

is valid. Then, there is a critical selection J ⊇ {i1} such that

inf
j∈J
‖q̂j(t)‖L1(Ω) > C∗(δ) (d0(t) + ε−1 λ3(Ω)) .

Employing now the first step, (75),

max
j∈J

ρ̄j(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε }) .
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Thus, we have proved the new alternative

‖q̂i1(t)‖L1(Ω) >
1
c0

(C∗(δ) (d0(t) + ε−1 λ3(Ω)) + c1 r0(t))

implies that there is J ⊃ {i1} critical such that (77)

max
j∈J

ρ̄j(t) ≤ C0 (δ
1
α′ + max{ε, e−

C1

ε })

Third step: By assumption dist(ρ̄0,Mcrit) > 0. Thus, for every critical selection J , the definition (29)
implies that |PJ(ρ̄(t))| ≥ dist(ρ̄0, Mcrit) > 0. This in turn implies that

max
j∈J

ρ̄j(t) ≥ N−1 dist(ρ̄0, Mcrit) .

Thus, there are δ0 > 0 and ε̄0 > 0 depending only on dist(ρ̄0, Mcrit) such that the hypothesis in (77)
yields a contradiction for all δ ≤ δ0 and 0 < ε ≤ min{ε0, ε1, ε̄0}. For d0 := dist(ρ̄0, Mcrit) one
may choose

δ0 = min{1, ( d0

4NC0
)α
′}, ε̄0 := min{ d0

4NC0
, C1

| ln d0

4NC0
|
} .

Conclusion: We resize k := C∗( δ0
2

) ε−1 λ3(Ω). For k ≥ k0 = C∗( δ0
2

)λ3(Ω) [min{ε0, ε1, ε̄0}]−1,
the set of times such that

{t : c0 ‖q̂i1(t)‖L1(Ω) − C∗( δ02 ) d0(t)− c1 r0(t) ≥ k}

has measure zero. Thus, standard arguments show that

c0 ‖q̂i1‖L2,1(Q) − C∗( δ02 ) ‖d0‖L2(0,T ) − c1 ‖r0‖L2(0,T ) ≤ k0 T
1
2 .

The claim follows easily.

If the vector of initial total partial masses ρ̄0 is on the critical manifold, we can prove that species do
not vanish only locally in time. We will then rely on the following simple observation.

Lemma 8.4. Assume that (65) is valid. Define

T ∗ := inf{t ∈ [0, T ] : min
i=1,...,N

ρ̄i(t) = 0} .

Then, there is a time T0 > 0 depending on B0 (cf. (62)) and on infi=1,...,N ρ̄
0
i such that T ∗ ≥ T0, and

‖q‖L2(Qt;RN−1) ≤ C0,t for all t < T ∗.

Proof. We recall Proposition 7.3, and we see that |ρ̄(t)− ρ̄0| ≤ C̃0 Φ∗(t, 0) for all t ∈ [0, T ]. Thus,
if T0 is such that infi=1,...,N ρ̄

0
i − C̃0 Φ∗(T0, 0) ≥ c0 > 0, we obtain that infi=1,...,N ρ̄i(t) > c0 for all

t ∈ [0, T0]. Due to the first step of the proof of Theorem 3.1, it then follows that

‖q̂i(t)‖L1(Ω) ≤ C∗( δ0
2

) (d0(t) + ε−1 λ3(Ω))

on [0, T0] for all i = 1, . . . , N , δ0 appropriate, and all ε ≤ min{ε0, ε1}. The claim follows.
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A Proofs of some auxiliary statements

We prove the Lemma 7.5.

Proof. The proof relies on the availability of a solution operator to the problem

divX = f in Ω, X = 0 on ∂Ω , (78)

for all f having mean value zero over Ω, so that for all 1 < q < +∞ the estimates

‖X‖W 1,q(Ω) ≤ cq ‖f‖Lq(Ω), ‖X‖Lq(Ω) ≤ cq ‖f‖[W 1,q′
0 (Ω)]∗

(79)

are valid. For details about the solution operator, see among others [FNP01], section 3.1.

We begin with the case α > 3. Then, for all η ∈ C1
c ([0, T [; C1

c (Ω; R3)) the function p satisfies∫
Q

p div η =−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η +

∫
Q

S(∇v) : ∇η

−
∫
Q

(
N∑
i=1

J i · ∇)η · v −
∫

Ω

%0 v
0 · η(0) +

∫
Q

nF ∇φ · η .

We make use of the estimates∣∣∣∣∫
Q

% v · ηt
∣∣∣∣ ≤ ‖% v‖L2, 6α

6+α (Q)
‖ηt‖

L
2, 6α

5α−6 (Q)∣∣∣∣∫
Q

% v ⊗ v : ∇η
∣∣∣∣ ≤ ‖% v2‖

L
1, 3α

3+α (Q)
‖∇η‖

L
∞, 3α

2α−3 (Q)∣∣∣∣∫
Q

S(∇v) : ∇η
∣∣∣∣ ≤ c ‖∇v‖L2(Q) ‖∇η‖L2(Q)∣∣∣∣∣

∫
Q

(
N∑
i=1

J iσ · ∇)η · v

∣∣∣∣∣ ≤
∥∥∥∥∥

N∑
i=1

J iσ v

∥∥∥∥∥
L1,3/2(Q)

‖∇η‖L∞,3(Q)∣∣∣∣∫
Q

nF ∇φ · η
∣∣∣∣ ≤ ‖nF ∇φ‖L∞,1(Q) ‖η‖L1,∞(Q)

≤ c ‖nF ∇φ‖L∞,1(Q)‖η‖L∞(0,T ;W 1,α(Ω)) .

(80)

Let t ∈]0, T [ and consider according to (78) a solution to the problem

divX = %(t)− %̄(t) in Ω, X = 0 on ∂Ω

Since %̄(t) = ‖%0‖L1(Ω) for all t as a consequence of (25), we obtain the estimate

‖X‖W 1,α(Ω) ≤ c (‖%(t)‖Lα(Ω) + ‖%0‖L1(Ω)) .

The identity (25) also implies that

−
∫
Q

%ψt =

∫
Q

% v · ∇ψ +

∫
Q

N∑
i=1

J i · ∇ψ = 0 for all ψ ∈ C1
c (0, T ; C1(Ω)) ,
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and since we assume α > 3, this yields

‖%t‖L2(0,T ; [W 1,2(Ω)]∗) ≤ ‖% v‖L2(Q) + ‖
N∑
i=1

J i‖L2(Q)

≤ c ‖% v‖
L

2, 6α
6+α (Q)

+ ‖
N∑
i=1

J i‖L2(Q) ≤ C0 .

Thus the properties (79) imply that

‖Xt‖L2(Q) ≤ c ‖%t‖L2(0,T ; [W 1,2(Ω)]∗) ≤ C0 .

Owing to the inequalities 6α/(5α−6) < 2 and 3α/(2α−3) < α, we see that |
∫
Q
p divX| ≤ C0.

Thus
∫
Q
p % ≤ C0, and since % ≥ c p1/α the claim follows.

If α ≤ 3, then we assume that 1 · J = 0, then p satisfies for all η ∈ C1
c ([0, T [; C1

c (Ω;R3))∫
Q

p div η =−
∫
Q

% v · ηt −
∫
Q

% v ⊗ v : ∇η +

∫
Q

S(∇v) : ∇η

−
∫

Ω

%0 v
0 · η(0) +

∫
Q

nF ∇φ · η .

We apply the estimates (80) for the right-hand except for the last one. Note further that 3α/(2α−3) ≥
3, and therefore β ≥ min{3, r(Ω, Γ)} > α′ by assumption. It follows that βα

β+α
> 1, and therefore∣∣∣∣∫

Q

nF ∇φ · η
∣∣∣∣ ≤ ‖nF ∇φ‖

L
βα
β+α (Q)

‖η‖
L

βα
βα−β−α (Q)

≤ C0 ‖η‖
L∞(0,T ;W

1, 3α
2α−3 (Ω))

.

It can be shown using (25) that % is a solution to the continuity equation in the sense of renormalised
solutions (see [Lio98] or [FNP01]) and that it satisfies for all s > 0 and ψ ∈ C1

c (0, T ; C1(Ω))

−
∫
Q

%s ψt =

∫
Q

%s v · ∇ψ + (1− s)
∫
Q

ρs div v ψ .

Defining r := 2α/(2s+ α)

‖%s(t) div v(t)‖Lr(Ω) ≤ ‖ div v(t)‖L2(Ω) ‖%(t)‖sLα(Ω) ≤ C0 ‖ div v(t)‖L2(Ω) .

Thus, ‖%s div v‖L2,r(Q) ≤ C0. Moreover, defining r̃ = 6α/(6s+ α)

‖%(t)s v(t)‖Lr̃(Ω) ≤ ‖%(t)‖sLα(Ω) ‖v(t)‖L6(Ω) ≤ C0 ‖v(t)‖L6(Ω) ,

and this shows that ‖%s v‖L2,r̃(Q) ≤ C0, r̃ = 6α/(6s+ α). Making use of the Sobolev inequality∣∣∣∣∫
Q

%s ψt

∣∣∣∣ ≤ C0 (‖∇ψ‖L2,r̃′ (Q) + ‖ψ‖L2,r′ (Q)) ≤ C0 ‖ψ‖
L2(0,T ;W

1, 6α
5α−6s (Ω))

.

For the choice s = 2
3
α − 1, it follows that ‖(%s)′‖

L2(0,T ; [W
1, 6α

6+α (Ω)]∗)
≤ C0. Now we consider a

solution to the problem

divX = %s(t)− %̄s(t) in Ω, X = 0 on ∂Ω

We obtain that ‖X‖
L∞(0,T ;W

1, 3α
2α−3 (Ω))

≤ C0 and that ‖Xt‖
L

2, 6α
7α−6 (Q)

≤ C0. We see again that∫
Q
p divX is finite, and the claim follows.
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B A special estimate for σ > 0 and τ > 0

In the case σ > 0, the dissipation inequality provides
√
σ ‖∇µ‖L2(Q) ≤ C0 as an additional informa-

tion. Thus, a gradient bound for all coordinates of the vector µ. We recall that we can always express
ρ = ∇h∗(µ) with the mapping of Lemma 4.7, and therefore

∇ρ = (∇µ ·D2h∗(µ)) . (81)

By means of the inequality (38), this shows that

|∇ρ| ≤ C1 % |∇µ| . (82)

Lemma B.1. Assume σ > 0. Then ‖ ln %‖W 1,0
2 (Q) ≤ C0 σ

−1/2.

Proof. Let 1 > γ > 0. Due to (81), (82)

|∇ ln(%+ γ)| ≤ C1
%

%+ γ
|∇µ| ≤ C1 |∇µ| .

Thus,
√
σ ‖∇ ln(% + γ)‖L2(Q) ≤ C . Let ε > 0. For t ∈]0, T [, we can always show that |{x ∈

Ω : ln(%(t) + γ) ≤ ε−1}| ≥ |Ω| − C0 e
− 1
ε . Applying (68) (see the proof of Lemma 8.2), we find a

decomposition ]0, T [= I1 ∪ I2 such that{∫
Ω
| ln(%(t) + γ)| ≤ C∗(δ)

(
(‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1

)
for t ∈ I1

|{x ∈ Ω : ln(%(t) + γ) ≥ −ε−1}| ≤ δ for t ∈ I2 .

In particular, choosing γ < 2−1 e−1/ε,{∫
Ω
| ln(%(t) + γ)| ≤ C∗(δ) (‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1) for t ∈ I1

|{x ∈ Ω : %(t) ≥ 2−1 e−1/ε}| ≤ δ for t ∈ I2 .

Due to the global mass conservation, we find parameter ε0 > 0, δ0 > 0 depending only on the data
such that I2 ≡ ∅ for all δ ≤ δ0 and ε ≤ ε0. Thus∫

Ω

| ln(%(t) + γ)| ≤ C∗(δ0) (‖∇ ln(%(t) + γ)‖L1(Ω) + ε−1
0 ) for t ∈]0, T [ .

It follows that
∫
Q
| ln(%(t) + γ)| ≤ C∗(δ0) (C0 σ

−1/2 + ε−1
0 ), and letting γ tend to zero, the claim

follows.

The Lemma B.1 allows to show the following statement.

Lemma B.2. Assume σ > 0. Then

‖((1 · Jσ) · ∇ ln %σ)+‖L1(Q) ≤ C0

√
σ .

Proof. Recall that %σ =
∑N

i=1 ∂ih
∗
τ,δ(µ

σ). ForX ∈ RN , recall moreover that ∂ih∗τ,δ(X) = ∂i(hδ)
∗(X)+

τ ω′(Xi) (cp. (42)). Thus

D2
i,jh
∗
τ,δ(X) = D2

i,j(hδ)
∗(X) + τ ω′′(Xi) δi,j .
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Making use of (38) and of the definition of h∗δ,τ

|D2(hδ)
∗(µσ,δ)|

%σ,δ
≤ C1

1 · ∇(hδ)
∗(µσ,δ)

%σ,δ

= C1
%σ,δ − τ

∑N
i=1 ω

′(µσ,δi )

%σ,δ
≤ C1 .

Moreover, owing to the choice of ω, there is a positive constant c3 such that ω′′(Xi) ≤ c3 ω
′(Xi) for

all X ∈ RN (cf. (43)), and therefore

τ ω′′(µσ,δi )

%σ,δ
=

τ ω′′(µσ,δi )

1 · ∇(hδ)∗(µσ,δ) + τ
∑N

i=1 ω
′(µσ,δi )

≤ c3 .

The two latter inequalities imply for i, j = 1, . . . , N that

|D2
i,jh
∗
τ,δ(µ

σ,δ)|
%σ,δ

≤ C1 + c3 =: C2 . (83)

For a while we are now going to forget about the δ indices. We compute that

∇ ln %σ = %−1
σ

N∑
i,j=1

D2
i,jh
∗
τ (µ

σ)∇µσj

=
D2h∗τ1 · 1√

N %σ
∇(µσ · 1) +

N−1∑
`=1

D2h∗τ1 · ξ`

%σ
∇(µσ · ξ`) ,

where ξ1, . . . , ξN−1 are chosen as to form an orthonormal basis of 1⊥. Thus, introducing for k =
1, . . . , N the driving forces Dk := ∇µσk + zk

mk
∇φσ, we obtain that

∇ ln %σ =
D2h∗τ1 · 1√

N %σ
(1 ·D) +

N−1∑
`=1

D2h∗τ1 · ξ`

%σ
(ξ` ·D)−

D2h∗τ1 · zm
%σ

∇φσ .

Making use of the identity −
∑N

i=1 J
i,σ = σ (1 ·D)

−
N∑
i=1

J i,σ · ∇ ln %σ = σ
D2h∗τ1 · 1√

N %σ
(1 ·D)2

−
N−1∑
`=1

D2h∗τ1 · ξ`

%σ
(
N∑
i=1

J i,σ) · (ξ` ·D)−
D2h∗τ1 · zm

%σ
(
N∑
i=1

J i,σ · ∇φσ)

≥ −
N−1∑
`=1

D2h∗τ1 · ξ`

%σ
(
N∑
i=1

J i,σ) · (ξ` ·D)−
D2h∗τ1 · zm

%σ
(
N∑
i=1

J i,σ · ∇φσ) . (84)

Since |ξ` ·D| ≤ c |ΠD| ≤ c
√
MD ·D for ` = 1, . . . , N − 1, it follows that

‖(
N∑
i=1

J i,σ) · (ξ` ·D)‖L1(Q) ≤ ‖
N∑
i=1

J i,σ‖L2(Q) ‖ΠD‖L2(Q) ≤ C0

√
σ

‖(
N∑
i=1

J i,σ) · ∇φσ‖L1(Q) ≤ ‖
N∑
i=1

J i,σ‖L2(Q) ‖∇φσ‖L2(Q) ≤ C0

√
σ .

Thus, (83) and (84) imply that

‖((1 · Jσ) · ∇ ln %σ)+‖L1(Q) ≤ C0 C̃1

√
σ .

DOI 10.20347/WIAS.PREPRINT.2396 Berlin 2017



W. Dreyer, P.-É. Druet, P. Gajewski, C. Guhlke 34

References

[DDGG16] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Existence of weak solutions for
improved Nernst-Planck-Poisson models of compressible reacting electrolytes. Preprint
2291 of the Weierstrass Institute for Applied mathematics and Stochastics, Berlin, 2016.
available at http://www.wias-berlin.de/preprint/2291/wias_preprints_2291.pdf.

[DDGG17a] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved
Nernst-Planck-Poisson models of compressible isothermal electrolytes. Part I: Deriva-
tion of the model and survey of the results. Preprint 2395 of the Weier-
strass Institute for Applied mathematics and Stochastics, Berlin, 2017. available at

http://www.wias-berlin.de/preprint/2395/wias_preprints_2395.pdf.

[DDGG17b] W. Dreyer, P.-E. Druet, P. Gajewski, and C. Guhlke. Analysis of improved Nernst-
Planck-Poisson models of compressible isothermal electrolytes. Part III: Compactness
and convergence. Preprint 2397 of the Weierstrass Institute for Applied mathematics
and Stochastics, Berlin, 2017. available at http://www.wias-berlin.de/preprint/2397/wias_preprints_2397.pdf.

[DGL14] W. Dreyer, C. Guhlke, and M. Landstorfer. A mixture theory of electrolytes containing
solvation effects. Electrochem. Commun., 43:75–78, 2014.

[DGM13] W. Dreyer, C. Guhlke, and R. Müller. Overcoming the shortcomings of the Nernst-Planck
model. Phys. Chem. Chem. Phys., 15:7075–7086, 2013.

[DGM15] W. Dreyer, C. Guhlke, and R. Müller. Modeling of electrochemical double layers in ther-
modynamic non-equilibrium. Phys. Chem. Chem. Phys., 17:27176–27194, 2015.
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