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This work deals with a model for a mixture of charged constituents introduced in [W.
Dreyer et al. Overcoming the shortcomings of the Nernst-Planck model. Phys. Chem.
Chem. Phys., 15:7075-7086, 2013]. The aim of this paper is to give a first existence
and uniqueness result for the equilibrium situation. A main difference to earlier works
is a momentum balance involving the gradient of pressure and the Lorenz force which
persists in the stationary situation and gives rise to the dependence of the chemical
potentials on the particle densities of every species.

1 A model for a mixture of charged constituents

The following model was introduced in [9] by W. Dreyer et al. The reader may consult this work for a
detailed account on the modeling.

Let Ω be the domain occupied by the mixture. The following system of equations describes the evolu-
tion of the mixture:

∂tρ+∇ · (ρv) = 0, (1a)

∂t(mini) +∇ · (miniv + J i) = 0, i ∈ {1, . . . , N − 1}, (1b)

∂t(ρv) +∇ · (ρv ⊗ v) +∇p = −nF∇ϕ, (1c)

−ε0∆ϕ = nF . (1d)

There are N − 1 diffusion fluxes given by constitutive equations:

J i = −
N−1∑
i=1

Mij

(
∇
(
µj − µN

T

)
+

1

T

(
zj
mj

− zN
mN

)
∇ϕ
)
, i ∈ {1, . . . , N − 1}. (2)

The continuity equation (1a) assures the preservation of the total mass. The N − 1 equations (1b)
are mass balance equations for N − 1 species. Equation (1c) is the momentum balance from which
the barycentric velocity v is calculated. Finally, (1d) is the Poisson equation, which determines the
electrostatic potential ϕ.

Here,
ni, i ∈ {1, . . . , N} represent the particle number densities for each constituent,
v represents the barycentric velocity,
ϕ represents the electrostatic potential,
n =

∑N
i=1 ni is the total particle number density of the mixture,

ρ =
∑N

i=1mini is the mass density of the mixture,
ε0 is the dielectric permittivity,
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mi represents the mass of a particle of species i ∈ {1, . . . , N},
zi is the electric charge of one particle of the species i ∈ {1, . . . , N},
nF =

∑N
i=1 zini represents the total electric charge density,

T denotes the absolute temperature,
p is the elastic pressure,
µi is the chemical potential of the species i ∈ {1, . . . , N},
Mij is a positive definite kinetic matrix.

The corresponding constitutive equations for p and the µi are given via a free energy density ρψ,
which depends on the partial mass densities ρi = mini:

µi =
∂ρψ

∂ρi
, i ∈ {1, . . . , N}; p = −ρψ +

N∑
i=1

ρiµi. (3)

We will consider the specific free energy density

ρψ =
N∑
i=1

ρiψ
R
i + (K − pR)(1− n

nR
) +K

n

nR
ln(

n

nR
) + nkT

N∑
i=1

ni
n

ln
(ni
n

)
, (4)

which describes a so called ideal mixture. This leads to specific chemical potentials

µi = gRi +
K

minR
ln
( n
nR

)
+
kT

mi

ln
(ni
n

)
with gRi = ψRi + pR/(min

R), and to the equation for the pressure

p = pR +K
( n
nR
− 1
)
. (5)

Here,
k is the Boltzmann constant,
K is the bulk modulus,
nR, pR and gRi , ψRi for i ∈ {1, . . . , N} are constant reference values.

As equations of the above type describe electrolytes, there are a lot of important applications. Due to
this, many (recent) publications on the analysis of similar systems can be found. We can only mention
a few. In [5] a Navier-Stockes-Nernst-Planck-Poisson (NSNPP) system is derived from the Maxwell-
Stefan equations and by the assumption of a dilute mixture a more classical Nernst-Planck part is
achieved. The authors prove local well-posedness, global well-posedness in two dimensions and
asymptotic decay to the equilibrium state for the evolution system. Another treatment of the NSNPP-
system can be found in [20]. In some papers the Poisson equation is replaced by an electroneutrality
condition, see e.g. [2]. The Nernst-Planck-Poisson (NPP) system without an momentum balance re-
ceived much attention as well, in particular as a model for semiconductors. See e.g. [11,12,14,16–19]
as well as [6, 7]. These papers include well-posedness results for two space dimensions and results
for three space dimensions in the case of Fermi-Dirac statistics. The recent work [4] establishes an ex-
istence result for the NPP system with Boltzmann statistics in three space dimensions. The paper [19]
is of particular importance for the present work, as it deals with the stationary case of NPP. In [10] a
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numerical analysis and numerical experiments for the discussed model are presented. Finally, in [8]
the discussed model was modified to take solvation effects into account.

The analysis of the evolution system is ongoing work and will be dealt with in future publications. In the
present paper we consider the simple case of thermodynamic equilibrium, that is, the corresponding
stationary system with no fluxes over the boundary. The paper is organized as follows: In the next
chapter we derive the equations which describe equilibrium states of the evolution system introduced
above. Then we state the main result of this work. In chapter 3 we prove the existence part of the main
theorem by means of an application of Schauder’s Fixed Point Theorem to prove a corresponding
result for an approximate problem and suitable a-priori estimates. In the fourth chapter the uniqueness
part of the main result is proved with the help of the free energy functional for the system.

2 The thermodynamic equilibrium

The aim of this work is to analyse the equations, which describe equilibrium states in the presented
model. Equilibria are characterised by vanishing barycentric velocity of the mixture and vanishing
diffusion fluxes:

v = 0 and J i = 0.

To determine the unknown fields ϕ and ni for i = 1, . . . , N in Ω, we use the Poisson equation, the
stationary momentum balance, and N − 1 equations, which guarantee vanishing diffusion fluxes.

−ε0∆ϕ = nF ,

∇p = −nF∇ϕ,

∇
(
µi − µN +

(
zi
mi

− zN
mN

)
ϕ

)
= 0, for i = 1, . . . , N − 1.

(6)

We remind of the definition of the pressure (5) and the relation n =
∑N

i=1 ni. The Poisson equation
has to be supplemented by boundary conditions. We assume that the boundary ∂Ω is the union of
two disjoint parts ΓD and ΓN and that

ϕ = ϕΓ on ΓD, ∇ϕ · ν = 0 on ΓN . (7)

Here ν denotes the outer unit normal at a point of ΓN . The additional side conditions of prescribed
masses ∫

Ω

ρi dx = M̃i, i = 1, . . . , N, (8)

complete the system.

Our next step is to transform the system (6) into a system consisting of the Poisson equation and N
state equations. We use the definition of the chemical potentials (3)1 and the Gibbs-Duhem equation
(3)2 to obtain the relation

∇p =
N∑
i=1

ρi∇µi =
N∑
i=1

ρi∇(µi − µN) + ρ∇µN . (9)

3



Next we substitute the momentum balance (6)2 for∇p. Moreover we insert the N − 1 equations from
(6)3 on the left hand side of (9). This yields

∇
(
µN +

zN
mN

ϕ

)
= 0.

We conclude that solutions of the the system (6),(7) also solve the system

−ε0∆ϕ = nF in Ω,

ϕ = ϕΓ on ΓD,

∇ϕ · ν = 0 on ΓN ,

µi +
zi
mi

ϕ = κi in Ω, i = 1, . . . , N,

(10)

where κ = (κ1, . . . , κN) ∈ RN is chosen in such a way, that (8) is satisfied. In fact the two systems
are equivalent, as we see easily by using the Gibbs-Duhem equation (3)2 again.

By substituting the explicit chemical potentials (3)1 for an ideal mixture into (10)4, we get the following
state equations

gRi +
K

minR
ln
( n
nR

)
+
kT

mi

ln
(ni
n

)
+

zi
mi

ϕ = κi in Ω, i = 1, . . . , N,

or, equivalently,

mig
R
i −

K

nR
ln
(
nR
)

+
K − nRkT

nR
ln (n) + kT ln (ni) + ziϕ = miκi in Ω, i = 1, . . . , N.

We introduce some abbreviations to improve the readability for the analysis of the system (10). We
redenote for simplicity Mi = M̃i/mi and

λi =
1

kT

(
mi

(
κi − gRi

)
+
K

nR
ln(nR)

)
for i = 1, . . . , N . We also introduce z̃i := zi/kT and β = kTnR/K > 0. The state equations
using the new notation are(

1

β
− 1

)
ln(n) + ln(ni) + z̃iϕ = λi in Ω, i = 1, . . . , N. (11)

Solving these equations for ni yields

ni(λ, ϕ) = exp (λi − z̃iϕ)

(
N∑
j=1

exp (λj − z̃jϕ)

)β−1

i = 1, . . . , N.

For ϕ ∈ L∞(Ω), λ ∈ RN , we define

Gi(λ;ϕ) :=

∫
Ω

ni(λ, ϕ(x)) dx i = 1, . . . , N.

Now we state the precise problem and our main result. Let V := {u ∈ W 1,2(Ω) : u|ΓD
= 0}. With

respect to the data of the problem we assume that
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(A1) Ω ⊂ Rn, is a bounded Lipschitzian domain with dimension n ≤ 3, ∂Ω = ΓD∪ΓN , ΓD∩ΓN =
∅, ΓD is of positive surface measure;

(A2) ϕΓ ∈ W 1,2(Ω) ∩ L∞(Ω) with
∫

Ω
∇ϕΓ∇h = 0 for all h ∈ V , (V as defined below);

(A3) ε0 > 0, 1 > β > 0, M = (M1, . . . ,MN) ∈ RN
+ , zi/kT = z̃i ∈ R are constants for

i = 1, . . . , N .

In (A2) we assume that the boundary datum ϕΓ can be extended to a W 1,2(Ω) function which
solves the Laplace equation (compare [13]). We are looking for a function ϕ and numbers λ =
(λ1, . . . , λN) ∈ RN , such that

ϕ− ϕΓ ∈ V ∩ L∞(Ω), (12a)

ε0

∫
Ω

∇ϕ∇h dx =

∫
Ω

∑
j

zjnj(λ, ϕ)h dx, for all h ∈ V, (12b)

G(λ;ϕ) = M. (12c)

Theorem 2.1. If the assumptions (A1)-(A3) are satisfied, then there exists an unique solution to prob-
lem (12). Moreover, there is a constant C only depending on the data of the problem, such that
||ϕ||L∞(Ω) ≤ C and |λ| ≤ C .

Our aim is to prove the existence part by introducing a truncated version of problem (12). This approx-
imate system is solved using Schauder’s Fixed Point Theorem. To this end we need some preliminary
results on the solvability of G(λ;ϕ) = M and some a-priori estimates.

3 Existence

In the following assume that (A1)-(A3) are fulfilled. We start with a statement about the solution oper-
ator to the problem G(λ;ϕ) = M .

Lemma 3.1. Let ϕ ∈ L∞(Ω) and M ∈ RN
+ . Then there is a unique λ = λ(ϕ,M) ∈ RN such that

G(λ;ϕ) = M . Moreover, for all C > 0 and M ∈ RN
+ there is a continuous function f such that

sup
||ϕ||L∞(Ω)≤C

|λ(ϕ,M)| < f(C, max
i=1,...,N

Mi, min
i=1,...,N

Mi). (13)

Proof. We prove two preliminaries. First, we abbreviate S(x) :=
∑N

j=1 exp(λj − z̃jϕ(x)), and we
compute for i, k ∈ 1, . . . , N

∂Gi

∂λk
(λ;ϕ) =

∫
Ω

e(λi−z̃iϕ)

S1−β

(
δk,i − (1− β)

e(λk−z̃kϕ)

S

)
dx.

It follows for k = 1, . . . , N that

N∑
i=1

∂Gi

∂λk
= β

∫
Ω

Sβ−1e(λk−z̃kϕ) > 0.
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Owing to β < 1 the non-diagonal entries of the matrix ∂Gi

∂λk
(λ;ϕ) are all negative. ∂Gi

∂λk
(λ;ϕ) is

thus strictly diagonal dominant, positive definite and regular for all λ ∈ RN . Hence, the solution to
G(λ;ϕ) = M is unique if it exists.

Second, we prove that there is a continuous function f such that

sup{|λ(ϕ,M)| : ||ϕ||L∞(Ω) ≤ C, G(λ;ϕ) = M} < f(C, max
i=1,...,N

Mi, min
i=1,...,N

Mi). (14)

In particular, all solutions toG(λ;ϕ) = M are in a bounded set of RN . For given λ, consider numbers
i0, i1 ∈ 1, . . . , N such that

max
i=1,...,N

λi = λi0 , min
i=1,...,N

λi = λi1 .

It holds

ni0(λ, ϕ(x)) = exp(λi0 − z̃i0ϕ(x))

(
N∑
j=1

exp(λj − z̃jϕ(x))

)β−1

= eβλi0 exp(−z̃i0ϕ(x))

(
N∑
j=1

exp(λj − λi0 − z̃jϕ(x))

)β−1

.

Owing to the choice of i0, λj − λi0 ≤ 0 for j 6= i0, and it follows that

N∑
j=1

exp(λj − λi0 − z̃jϕ(x)) ≤
N∑
j=1

exp(|z̃j|C).

Thus

ni0(λ, ϕ(x)) ≥ eβλi0
exp(−|z̃i0|C)(∑N
j=1 exp(|z̃j|C)

)1−β =: eβλi0h0(C).

Thus, since Gi0(λ;ϕ) = Ni0 , it follows that

eβλi0 ≤ Mi0

h0(C)|Ω|
⇒ βλi0 ≤ ln

(
Mi0

h0(C)|Ω|

)
. (15)

Consider now

ni1(λ, ϕ(x)) = exp(λi1 − z̃i1ϕ(x))

(
N∑
j=1

exp(λj − z̃jϕ(x))

)β−1

.

Analogously to above we find

ni1(λ, ϕ(x)) ≤ eβλi1
exp(|z̃i1|C)(∑N

j=1 exp(−|z̃j|C)
)1−β =: eβλi1h1(C)
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and thus

Mi1 = Gi1(λ;ϕ) ≤ eβλi1h1(C)|Ω| ⇒ βλi1 ≥ ln

(
Mi1

h1(C)|Ω|

)
. (16)

The estimates (15) and (16) together imply (14).

We next prove the existence by means of the implicit function theorem (see e.g. [21]). For τ ∈ [0, 1],
and λ ∈ RN , we define a function H : RN × [0, 1]→ RN via

H(λ, τ) := G(λ;ϕ)− τM − (1− τ)G(0;ϕ).

Owing to (14) all solutions to H(λ, τ) = 0 are in a bounded set of RN × [0, 1]. Moreover, (0, 0) is
a solution to the problem H(λ, τ) = 0, and the derivative Hλ = Gλ is regular. The implicit function
theorem yields the existence of a neighbourhood [0, ε] and of a C1 function λ : [0, ε] → RN with
λ(0) = 0, such that H(λ(τ), τ) = 0 for τ ∈ [0, ε].

To finish the proof we define τ ∗ as the supremum over all τ ∈ [0, 1], such that the problemH(λ, τ) =
0 possesses a solution. Now assume τ ∗ < 1. We choose a sequence τk → τ ∗ from below and by
our assumption we have λ(τk) ∈ RN such thatH(λ(τk), τk) = 0. Since all solutions to the equation
are in a bounded set of RN , λ(τk) → λ∗ for a subsequence, and thus H(λ∗, τ ∗) = 0. But owing
to the regularity of the derivative Hλ(λ

∗, τ∗) and the implicit function theorem, we can continue the
solution in an intervall [0, τ ∗ + ε], showing that τ ∗ was not the supremum.

In the next Lemma, we establish an abstract bound for the positive part of the solutions to the equation
G(λ;ϕ) = M .

Lemma 3.2. Let M ∈ RN
+ . For ϕ ∈ L∞(Ω), denote λ(ϕ,M) ∈ RN the unique solution to

G(λ;ϕ) = M . Then, for all C > 0

sup
ϕ∈L∞(Ω)

||ϕ||W1,1(Ω)≤C

max
i=1,...,N

|λi(ϕ,M)| <∞.

Proof. We show that the λi are bounded from above. To get the full assertion of the Lemma the bound-
edness from below can be proved analogously. We argue assuming that the claim is not true. Then, we
can construct a sequence of functions {ϕm} ∈ L∞(Ω)∩W 1,1(Ω) such that ||ϕm||W 1,1(Ω) ≤ C , and
such that the solutions λm to G(λm;ϕm) = M satisfy maxi=1,...,N λ

m
i → +∞. Since {1, . . . , N}

is a discrete set, there is also a subsequence ofm→∞ (still denoted bym) and an i0 ∈ {1, . . . , N}
such that maxi=1,...,N λ

m
i = λmi0 for all m. For this sequence holds

ni0(λm, ϕm(x)) = exp
(
λmi0 − z̃i0ϕm(x)

)( N∑
j=1

exp
(
λmj − z̃jϕm(x)

))β−1

= eβλ
m
i0 exp (−z̃i0ϕm(x))

(
N∑
j=1

exp
(
λmj − λmi0 − z̃jϕm(x)

))β−1

.

Observe that λmj − λmi0 ≤ 0 for all j 6= i0. Thus,

N∑
j=1

exp
(
λmj − λmi0 − z̃jϕm(x)

)
≤

N∑
j=1

exp (−z̃jϕm(x)) .
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We now exploit that {ϕm} is bounded in W 1,1(Ω). Due to the Rellich theorem (see e.g. [13]), {ϕm}
is compact in L1(Ω), and therefore, the subsequence can be chosen so that ϕm(x)→ ϕ(x) almost
everywhere in Ω. The limes ϕ ∈ L1(Ω) is almost everywhere finite. Using Fatou’s Lemma, β < 1
and the calculations above, we show

Mi0 = lim inf
m→∞

Gi0(λm;ϕm) = lim inf
m→∞

∫
Ω

ni0(λm, ϕm(x)) ≥
∫

Ω

lim inf
m→∞

ni0(λm, ϕm(x))

≥
∫

Ω

lim inf
m→∞

eβλ
m
i0 lim inf

m→∞
e−z̃i0ϕm(x)

(
N∑
j=1

e−z̃jϕm(x)

)β−1

.

Since the first factor under the integral converges to∞, the second factor has to converge to 0. This
implies that |ϕm| → ∞ almost everywhere in Ω, which contradicts ϕm → ϕ in L1(Ω).

These two Lemmas will help to establish an existence result for a truncated system. For m ∈ N and
ϕ ∈ L1(Ω), define a truncation operator at level m via

[ϕ](m)(x) :=


m for ϕ(x) > m

ϕ(x) for −m ≤ ϕ(x) ≤ m

−m for ϕ(x) < m.

For each m ∈ N, we prove the solvability of the problem

− ε0∆ϕ =
N∑
j=1

zjnj(λ, [ϕ](m)) in Ω,

ϕ = ϕΓ on ΓD, ∇ϕ · ν = 0 on ΓN ,

G(λ; [ϕ](m)) = M.

(17)

The solvability of (17) follows from a fixed point procedure. Consider given n̂1, . . . , n̂N ∈ L2(Ω) such
that ni ≥ 0 and

∫
Ω
n̂i = Mi for i = 1, . . . , N . It is possible (compare e.g. [13]) to find a unique weak

solution to the problem

−ε0∆ϕ =
N∑
j=1

zjn̂j in Ω, ϕ = ϕΓ on ΓD, ∇ϕ · ν = 0 on ΓN . (18)

We obtain that ϕ ∈ W 1,2(Ω). Using Lemma 3.1, there is a unique λ ∈ RN such that

G(λ; [ϕ](m)) = M.

We define an image element T (n̂) ∈ [L2(Ω)]N via

T (n̂)i := ni(λ, [ϕ](m)) = exp
(
λi − z̃i[ϕ](m)

)( N∑
j=1

exp
(
λj − z̃j[ϕ](m)

))β−1

.
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The mapping T from [L2(Ω)]N into itself is well defined. Moreover, T maps the following closed
convex setM into itself

M :=

{
n ∈ [L2(Ω)]N : n ≥ 0,

∫
Ω

n = M

}
.

We next show that T is compact. Suppose that {n̂k} is a bounded sequence inM ⊂ [L2(Ω)]N .
Then, the corresponding solutions ϕk to (18) are bounded in W 1,2(Ω), and there is a subsequence
of {ϕk} converging to a ϕ almost everywhere in Ω. Owing to the Lemma 3.1, the solutions λk to
G(λk; [ϕ](m)) = M are in a bounded set of RN . This is due to the truncation that ensures that
[ϕk]

(m) is in a bounded set of L∞(Ω). Thus, λk → λ for a subsequence. Hence, |nki | ≤ C and
nki → ni almost everywhere in Ω as k →∞, where

ni = exp
(
λi − z̃i[ϕ](m)

)( N∑
j=1

exp
(
λj − z̃j[ϕ](m)

))β−1

, i = 1, . . . , N.

This ensures the convergence T (n̂k)i → ni in L2(Ω) for i = 1, . . . , N and thus the compactness
of T as a mapping from [L2(Ω)]N into itself. The continuity of T is proved analogously. Hence, T
possesses due to the Schauder theorem (see e.g. [21]) a fixed point inM, that solves (17).

It remains to carry over the passage to the limit form→ +∞ in (17). This relies on two last estimates.

Lemma 3.3. If ϕ ∈ W 1,2(Ω) is a weak solution to the problem (18), then for all 1 ≤ p < d/(d− 1)
(d = space dimension)

||∇ϕ||Lp(Ω) ≤ c(||ϕΓ||W 1,2(Ω), ||
N∑
j=1

zjn̂j||L1(Ω))

= c(||ϕΓ||W 1,2(Ω),M1, . . . ,MN).

Proof. Theory of elliptic equations with right-hand side in L1 (see e.g. [3]).

Lemma 3.3 ensures that the solution ϕ = ϕm to (17) is such that supm∈N ||ϕm||W 1,1(Ω) ≤ C . In par-
ticular, it follows from Lemma 3.2 for the solutions to G(λm; [ϕm](m)) = M that supm∈N supi=1,...,N

|λmi | ≤ +∞. With these informations, it follows at last that

Lemma 3.4. The solution ϕm to the problem

ϕm − ϕΓ ∈ V

ε0

∫
Ω

∇ϕm · ∇h =

∫
Ω

N∑
j=1

zjnj(λ
m; [ϕm](m))h, ∀h ∈ V

(19)

satisfies ||ϕm||L∞(Ω) ≤ C .
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Proof. We begin by defining the numbers

λ0 := sup
ϕ∈L∞(Ω)

||ϕ||W1,1(Ω)≤C

sup
i=1,...,N

|λi(ϕ,M)|

and ϕ0 ∈ R as solution of the equation

0 = f(ϕ0), where f(ϕ) =
N∑
j=1

zj exp(λj − z̃jϕ). (20)

Note that f ′(ϕ) < 0, i.e. f is strictly decreasing and limϕ→±∞ f(ϕ) = ∓∞. Thus, there is a unique
ϕ0, which is bounded from above and below by constants depending on λ0.

Now choose in (19) a test function of the form h+ = (ϕ− γ)+ with γ ≥ max{ϕ0, supΓD ϕΓ}. Then
h+ ∈ V and ∇ϕ∇h+ = (∇h+)2 (see e.g. [15, Lemma 7.6.]). Therefore testing (19) with h+ and
using (20) yields

ε0

∫
Ω

(∇h+)2 =

∫
Ω

N∑
j=1

zjnj(λ, [ϕ](m))h+

=

∫
Ω

N∑
j=1

zj exp(λj − z̃j[ϕ](m))

(
N∑
k=1

exp(λk − z̃k[ϕ](m))

)β−1

h+

≤
N∑
j=1

zj exp(λj − z̃jϕ0)

∫
Ω

(
N∑
k=1

exp(λk − z̃k[ϕ](m))

)β−1

h+

= 0.

Hence, h+ = 0, i.e. ϕ ≤ max
{
ϕ0, ||ϕΓ||L∞(Ω)

}
. A bound from below is obtained in an analogous

way.

We thus have established that the sequence ϕm is uniformly bounded in W 1,2(Ω) ∩ L∞(Ω). For m
sufficiently large, the truncation operator ceases to work, and the solution to (17) is in fact a solution
of (12).

4 Uniqueness

In this section we prove the uniqueness part of Theorem 2.1. To this end we introduce a functional
F , which is related to the free energy (4) of the system (1). It turns out, that the state equations (11)
are the Euler-Lagrange equations for F . We proceed by showing that F is strongly convex. Thus, a
solution of problem (12) is also a minimum of F and we can show that there is at most one minimum
of F .

As we know that the solution of (12) is bounded from above and away from 0 by the data of the
problem, we study F on the set

MR := {(n1, . . . , nN) ∈ [L2(Ω)]N : R−1 < ni < R for i = 1, . . . , N}
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for R big enough. Consider the functional F :MR → R given by

F (n1, . . . , nN) =

∫
Ω

−β−1n+
N∑
j=1

nj ln(nj) + (β−1 − 1)n ln(n)

− ε0

2kT
(∇ϕ)2 +

1

kT
nFϕΓ +

N∑
j=1

λj(Mj − nj) dx.

(21)

The side condition of prescribed masses (8) are incorporated intoF by Lagrange multipliers λi. For the
following computations ϕ is treated as a function of (n1, . . . , nN) given by ϕ = 1/ε0∆−1

0 (nF ) +ϕΓ.
The inverse Laplace operator ∆−1

0 : L2(Ω)→ V is defined for f ∈ L2(Ω) by

∆−1
0 (f) := u, where u ∈ V satisfies

∫
Ω

∇u · ∇h =

∫
Ω

fh, for all h ∈ V

(This is well defined, compare [1] and [13]). Now we write the part of the functional F involving the
electro static potential ϕ as

Φ(n1, . . . , nN) :=
ε0

2kT

∫
Ω

(∇ϕ)2 dx =
ε0

2kT

∫
Ω

(
∇
(

1

ε0

∆−1
0

[
nF
]

+ ϕΓ

))2

dx.

For u = (u1, . . . , uN), v = (v1, . . . , vN) ∈MR a strait forward calculation yields

DF (n1, . . . , nN)[u] =

∫
Ω

N∑
j=1

(
ln(nj) + (β−1 − 1) ln(n) + z̃jϕ− λj

)
uj dx (22)

and

D2F (n1, . . . , nN)[u, v] =

∫
Ω

N∑
j=1

ujvj
nj

+ (β−1 − 1)
1

n

(
N∑
j=1

uj

)(
N∑
j=1

vj

)

+
1

ε0kT
∇

(
∆−1

0

(
N∑
j=1

zjuj

))
· ∇

(
∆−1

0

(
N∑
j=1

zjvj

))
dx.

(23)

By (22) we see that the state equations (11) are the Euler-Lagrange equations of F , as claimed.

Lemma 4.1. Let F : MR → R be given as in (21). Then it holds

D2F (n1, . . . , nN)[u, u] ≥ 1

R
||u||2L2(Ω)

for all (n1, . . . , nN) ∈MR and all u ∈MR.

Proof. Using β < 1 equation (23) implies

D2F (n1, . . . , nN)[u, u] ≥
∫

Ω

N∑
j=1

ujuj
nj
≥ 1

R

∫ N∑
j=1

u2
j (24)

11



Lemma 4.2. The functional F given by (21) has at most one minimum inMR.

Proof. From Lemma 4.1 we infer that for all u, v ∈MR it holds

F (u) + F (v)− 2F

(
u+ v

2

)
=

∫ 1

0

d

ds

(
F

(
u+ v

2
+
s

2
(u− v)

)
+ F

(
u+ v

2
+
s

2
(v − u)

))
ds

=

∫ 1

0

(
DF

(
u+ v

2
+
s

2
(u− v)

)
−DF

(
u+ v

2
+
s

2
(v − u)

))
[u− v]ds

=

∫ 1

0

∫ 1

0

d

dt

(
DF

(
u+ v

2
+
s

2
(v − u) + ts(u− v)

))
[u− v]dt ds

=

∫ 1

0

s

∫ 1

0

D2F

(
u+ v

2
+
s

2
(v − u) + ts(u− v)

)
[u− v, u− v]dt ds

≥
∫ 1

0

s

∫ 1

0

1

R
||u− v||2L2dt ds =

1

2R
||u− v||2L2 .

Now let u, v ∈MR be two minima of F . Then

0 ≥ F (u) + F (v)− 2F

(
u+ v

2

)
≥ 1

2R
||u− v||2L2 .

Thus, u = v almost everywhere in Ω.

This completes the proof of Theorem 2.1.
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