We consider an improved Nernst–Planck–Poisson model first proposed by Dreyer et al. in 2013 for compressible isothermal electrolytes in non-equilibrium. The elastic deformation of the medium, that induces an inherent coupling of mass and momentum transport, is taken into account. The model consists of convection–diffusion–reaction equations for the constituents of the mixture, of the Navier–Stokes equation for the barycentric velocity and of the Poisson equation for the electrical potential. Due to the principle of mass conservation, cross-diffusion phenomena must occur, and the mobility matrix (Onsager matrix) has a non-trivial kernel. In this paper, we establish the existence of a global-in-time weak solution, allowing for a general structure of the mobility tensor and for chemical reactions with fast nonlinear rates in the bulk and on the active boundary. We characterise the singular states of the system, showing that the chemical species can vanish only globally in space, and that this phenomenon must be concentrated in a compact set of measure zero in time