25 research outputs found

    In vivo antimycobacterial studies of toussaintine A-chitosan nanocomposites

    Get PDF
    Chitosan (CS, molecular weight (MW) 20.2 kDA, stability of 210 °C and degree of deacetylation (DD) 73.31%) was obtained by deacetylation of chitin extracted from shrimp (Litopenaeus vannamei) shell wastes. The encapsulation of the studied bioactive natural product, toussaintine A (TA) isolated from the leaves of Toussaintia orientalis, on a chitosan-tripolyphosphate (CS/TPP) nanoformulation was attained through ionotropic gelation. Characterization of pure CS, CS/TPP and TA-CS/TPP nanocomposites was carried out by FTIR and SEM. The encapsulation efficiency and loading capacity of the TA were 69.33 and 0.46%, respectively. The in vitro release kinetics established an initial release of 27% of TA in the initial six hours followed by a slow and maintained release up to 72 h. The in vivo antimycobacterial acitivities of both TA and TA-CS/TPP nanocomposites against Mycobacterium indicus pranii (MIP) employing Galleria mellonella larvae as an infection model were evaluated. TA-CS/TPP nanocomposite formulations exhibited remarkable effectiveness against MIP than free TA.Keywords: Toussaintine A; chitosan; nanocomposites, antimycobacterial; Galleria mellonell

    Antibacterial and cytotoxic activities of Terminalia stenostachya and Terminalia spinosa

    Get PDF
    Plants that belong to the Combretaceae family have long history of use in the traditional medicine systems of Africa and Asia for treatment of diseases and conditions associated with HIV/AIDS-opportunistic infections. The objective of this study was to investigate the biological activities of extracts of Terminalia stenostachya Engl. & Diels and Terminalia spinosa Engl. (Combretaceae), to verify the rationale for their use by traditional health practitioners in the treatment of HIV/AIDS patients in Tanzania. Extracts of the leaves, stem barks and roots of T. stenostachya and extracts of stem barks and roots of T. spinosa have all shown strong activity against a number of standard microbial strains including Mycobacterium madagascariense and Mycobacterium indicus pranii, Streptococcus faecalis, Staphylococcus aureus, Vibrio cholera, Bacillus anthracis, Bacillus subtilis, Klebsiella pneumoniae, Salmonella typhi, Pseuodomonas aeruginosa and Escherichia coli. All extracts from the two plant species showed strong antimycobacterial activity against test organisms. The stem and root bark extracts were more active than leaves against both gram positive and negative bacteria. With the exception of two extracts from stem barks of T. spinosa, all other extracts from T. stenostachya and T. spinosa that were tested exhibited less activity against brine shrimp larvae with LC50 values ≥100µg/mL compared to cyclophosphamide, a standard anticancer drug. These results provide an indication that these plants may possess therapeutically potent antimicrobial compounds worth further development

    Genetic diversity of Mycobacterium tuberculosis isolated from tuberculosis patients in the Serengeti ecosystem in Tanzania

    Get PDF
    SummaryThis study was part of a larger cross-sectional survey that was evaluating tuberculosis (TB) infection in humans, livestock and wildlife in the Serengeti ecosystem in Tanzania. The study aimed at evaluating the genetic diversity of Mycobacterium tuberculosis isolates from TB patients attending health facilities in the Serengeti ecosystem. DNA was extracted from 214 sputum cultures obtained from consecutively enrolled newly diagnosed untreated TB patients aged ≥18 years. Spacer oligonucleotide typing (spoligotyping) and Mycobacterium Interspersed Repetitive Units and Variable Number Tandem Repeat (MIRU-VNTR) were used to genotype M. tuberculosis to establish the circulating lineages. Of the214 M. tuberculosis isolates genotyped, 55 (25.7%) belonged to the Central Asian (CAS) family, 52 (24.3%) were T family (an ill-defined family), 38 (17.8%) belonged to the Latin American Mediterranean (LAM) family, 25 (11.7%) to the East-African Indian (EAI) family, 25 (11.7%) comprised of different unassigned (‘Serengeti’) strain families, while 8 (3.7%) belonged to the Beijing family. A minority group that included Haarlem, X, U and S altogether accounted for 11 (5.2%) of all genotypes. MIRU-VNTR typing produced diverse patterns within and between families indicative of unlinked transmission chains. We conclude that, in the Serengeti ecosystem only a few successful families predominate namely CAS, T, LAM and EAI families. Other types found in lower prevalence are Beijing, Haarlem, X, S and MANU. The Haarlem, EAI_Somalia, LAM3 and S/convergent and X2 subfamilies found in this study were not reported in previous studies in Tanzania

    Mapping of Mycobacterium tuberculosis Complex Genetic Diversity Profiles in Tanzania and Other African Countries

    Get PDF
    The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIV-positive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity

    Larvicidal, antimicrobial and brine shrimp activities of extracts from Cissampelos mucronata and Tephrosia villosa from coast region, Tanzania

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The leaves and roots of <it>Cissampelos mucronata </it>A. Rich (Menispermaceae) are widely used in the tropics and subtropics to manage various ailments such as gastro-intestinal complaints, menstrual problems, venereal diseases and malaria. In the Coast region, Tanzania, roots are used to treat wounds due to extraction of jigger. Leaves of <it>Tephrosia villosa </it>(L) Pers (Leguminosae) are reported to be used in the treatment of diabetes mellitus in India. In this study, extracts from the roots and aerial parts of <it>C. mucronata </it>and extracts from leaves, fruits, twigs and roots of <it>T. villosa </it>were evaluated for larvicidal activity, brine shrimps toxicity and antimicrobial activity.</p> <p>Methods</p> <p>Powdered materials from <it>C. mucronata </it>were extracted sequentially by dichloromethane followed by ethanol while materials from <it>T.villosa </it>were extracted by ethanol only. The extracts obtained were evaluated for larvicidal activity using <it>Culex quinquefasciatus </it>Say larvae, cytotoxicity using brine shrimp larvae and antimicrobial activity using bacteria and fungi.</p> <p>Results</p> <p>Extracts from aerial parts of <it>C. Mucronata </it>exhibited antibacterial activity against <it>Staphylococcus aureus</it>, <it>Escherichia coli</it>, <it>Pseudomonas aeruginosa</it>, <it>Salmonella typhi</it>, <it>Vibrio cholera</it>, <it>Bacillus anthracis</it>, <it>Streptococcus faecalis </it>and antifungal activity against <it>Candida albicans </it>and <it>Cryptococcus neoformans</it>. They exhibited very low toxicity to brine shrimps and had no larvicidal activity. The root extracts exhibited good larvicidal activity but weak antimicrobial activity. The root dichloromethane extracts from <it>C. mucronata </it>was found to be more toxic with an LC<sub>50 </sub>value of 59.608 μg/mL while ethanolic extracts from root were not toxic with LC<sub>50</sub>>100 μg/mL). Ethanol extracts from fruits and roots of <it>T. villosa </it>were found to be very toxic with LC<sub>50 </sub>values of 9.690 μg/mL and 4.511 μg/mL, respectively, while, ethanol extracts from leaves and twigs of <it>T. villosa </it>were found to be non toxic (LC<sub>50</sub>>100 μg/mL).</p> <p>Conclusion</p> <p>These results support the use of <it>C. mucronata </it>in traditional medicine for treatment of wounds. Extracts of <it>C. mucronata </it>have potential to yield active antimicrobial and larvicidal compounds. The high brine shrimp toxicity of <it>T. villosa </it>corroborates with literature reports that the plant is toxic to both livestock and fish. The results further suggest that <it>T. villosa </it>extracts have potential to yield larvicidal and possibly cytotoxic compounds. Further studies to investigate the bioactive compounds responsible for the observed biological effects are suggested.</p

    Mapping of Mycobacterium tuberculosis complex genetic diversity profiles in Tanzania and other African countries

    Get PDF
    The aim of this study was to assess and characterize Mycobacterium tuberculosis complex (MTBC) genotypic diversity in Tanzania, as well as in neighbouring East and other several African countries. We used spoligotyping to identify a total of 293 M. tuberculosis clinical isolates (one isolate per patient) collected in the Bunda, Dar es Salaam, Ngorongoro and Serengeti areas in Tanzania. The results were compared with results in the SITVIT2 international database of the Pasteur Institute of Guadeloupe. Genotyping and phylogeographical analyses highlighted the predominance of the CAS, T, EAI, and LAM MTBC lineages in Tanzania. The three most frequent Spoligotype International Types (SITs) were: SIT21/ CAS1-Kili (n = 76; 25.94%), SIT59/LAM11-ZWE (n = 22; 7.51%), and SIT126/EAI5 tentatively reclassified as EAI3-TZA (n = 18; 6.14%). Furthermore, three SITs were newly created in this study (SIT4056/EAI5 n = 2, SIT4057/T1 n = 1, and SIT4058/EAI5 n = 1). We noted that the East-African-Indian (EAI) lineage was more predominant in Bunda, the Manu lineage was more common among strains isolated in Ngorongoro, and the Central-Asian (CAS) lineage was more predominant in Dar es Salaam (p-value<0.0001). No statistically significant differences were noted when comparing HIV status of patients vs. major lineages (p-value = 0.103). However, when grouping lineages as Principal Genetic Groups (PGG), we noticed that PGG2/3 group (Haarlem, LAM, S, T, and X) was more associated with HIVpositive patients as compared to PGG1 group (Beijing, CAS, EAI, and Manu) (p-value = 0.03). This study provided mapping of MTBC genetic diversity in Tanzania (containing information on isolates from different cities) and neighbouring East African and other several African countries highlighting differences as regards to MTBC genotypic distribution between Tanzania and other African countries. This work also allowed underlining of spoligotyping patterns tentatively grouped within the newly designated EAI3-TZA lineage (remarkable by absence of spacers 2 and 3, and represented by SIT126) which seems to be specific to Tanzania. However, further genotyping information would be needed to confirm this specificity.S1 Fig. Spoligoforest tree drawn using the SpolTools software (available through http:// www.emi.unsw.edu.au/spolTools; Reyes et al. [27], Tang et al. [26]), and shown as a Hierarchical Layout. The Figure was drawn on all patterns including orphan patterns (n = 293). Each spoligotype pattern from the study is represented by a node with area size being proportional to the total number of isolates with that specific pattern. Changes (loss of spacers) are represented by directed edges between nodes, with the arrowheads pointing to descendant spoligotypes. In this representation, the heuristic used selects a single inbound edge with a maximum weight using a Zipf model. Solid black lines link patterns that are very similar, i.e., loss of one spacer only (maximum weight being 1.0), while dashed lines represent links of weight comprised between 0.5 and 1, and dotted lines a weight less than 0.5. (PDF)S1 Table. Detailed demographic, epidemiologic and genotyping information on Tanzanian M. tuberculosis isolates. Note that all strains were pansusceptible, and were isolated from newly diagnosed, sputum smear/culture positive pulmonary TB patients. NEW SITs are followed by an asterisk ( ) and highlighted in yellow. Orphan spoligotypes are highlighted in blue. (PDF)The Wellcome Trust Grant [WT087546MA] to EVM, MMR and MIM and by MUHAS Sida Sarec Small Grant [000/3177] to EVM, MIM and BZK. The Southern African Centre for Infectious Disease Surveillance (SACIDS) provided a Postdoctoral Research Fellowship to EVM and PhD candidacy for BZK.http://www.plosone.orgam2016Veterinary Tropical Disease

    Effect of Supplementation with Zinc and Other Micronutrients on Malaria in Tanzanian Children: A Randomised Trial

    Get PDF
    Hans Verhoef and colleagues report findings from a randomized trial conducted among Tanzanian children at high risk for malaria. Children in the trial received either daily oral supplementation with either zinc alone, multi-nutrients without zinc, multi-nutrients with zinc, or placebo. The investigators did not find evidence from this study that zinc or multi-nutrients protected against malaria episodes

    Preparation, Characterization and in Vivo Antimycobacterial Studies of Panchovillin-Chitosan Nanocomposites

    No full text
    Chitosan (CS, molecular weight 20.2 kDa, degree of deacylation (DD) 73.31%) was successfully obtained by deacetylation of chitin extracted from shrimp (Litopenaeus vannamei) shell wastes. The encapsulation of the bioactive natural product, panchovillin (PANV), isolated from Erythrina schliebenii, on a chitosan-tripolyphosphate (CS/TPP) nano-framework was achieved by ionotropic gelation. Characterization of pure CS, CS/TPP and PANV-CS/TPP nanocomposites was performed by FTIR, SEM and XRD. The molecular weight of chitosan and the thermal stability of the materials were determined by MALDI-TOF-MS and simultaneous thermal analyzer (STA)/DTG, respectively. The respective encapsulation efficiency and loading capacity of the PANV were found to be 70% and 0.36%. The in vitro release studies showed an initial burst of 42% of PANV in the first six hours. This was followed by a slow and sustained release up to 72 h. The in vivo antimycobacterial activities of both PANV and PANV-CS/TPP nanocomposite against Mycobacterium indicus pranii (MIP) using Galleria mellonella larvae as an in vivo infection model are reported in this paper

    Prevalence and risk factors for infection of bovine tuberculosis in indigenous cattle in the Serengeti ecosystem, Tanzania.

    Get PDF
    BACKGROUND: Bovine tuberculosis (bTB) is a chronic debilitating disease and is a cause of morbidity and mortality in livestock, wildlife and humans. This study estimated the prevalence and risk factors associated with bovine tuberculosis transmission in indigenous cattle at the human-animal interface in the Serengeti ecosystem of Tanzania. RESULTS: A total of 1,103 indigenous cattle from 32 herds were investigated for the presence of bTB using the Single Intradermal Comparative Tuberculin Test. Epidemiological data on herd structure, management and grazing system were also collected.The apparent individual animal prevalence of tuberculin reactors was 2.4% (95% confidence interval (CI), 1.7 - 3.5%), whereas the true prevalence was 0.6% CI, 0.6 - 0.7% as indicated by a reaction to avian tuberculin purified protein derivatives (PPD) which is more than 4 mm greater than the reaction to avian tuberculin PPD. The results showed that 10.6% (117/1,103) showed non-specific reactions (atypical mycobacterium). The herd prevalence of 50% (16/32) was found. Tuberculin skin test results were found to be significantly associated with age, location, size of the household and animal tested. Of 108 respondents, 70 (64.8%) individuals had not heard about bovine tuberculosis at all. Thirty five percent (38/108) of respondents at least were aware of bTB. About 60% (23/38) of respondents who were aware of bTB had some knowledge on how bTB is spread. Eighty one percent (87/108) of respondents were not aware of the presence of bTB in wildlife. There is regular contact between cattle and wild animals due to sharing of grazing land and water sources, with 99% (107/108) of households grazing cattle in communal pastures. CONCLUSION: The study has demonstrated a high reported interaction of livestock with wildlife and poor knowledge of most cattle owners concerning bTB and its transmission pathways among people, livestock and wildlife. Although the overall proportion of animals with bTB is relatively low, herd prevalence is 50% and prevalence within herds varied considerably. Thus there is a possibility of cross transmission of bTB at wildlife-livestock interface areas that necessitates use of genetic strain typing methods to characterize them accurately
    corecore