354 research outputs found

    Combustion of solid fuel in very low speed oxygen streams

    Get PDF
    In reduced gravity, the combustion of solid fuel in low-speed flow can be studied. The flame behavior in this low-speed regime will fill a void in our understanding of the flow effect on combustion. In addition, it is important for spacecraft fire safety considerations. In this work, modeling and experimental work on low-speed forced-concurrent-flow flame spread are carried out. In addition, experiments on reduced-gravity buoyant-flow flame spread are performed

    Factors which influence the cardiac surgeon's decision not to operate on patients referred for consideration of surgery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to document what proportion of patients referred for consideration of cardiac surgery are turned down, the reasons given for not operating and also to evaluate what happens to those patients who do not undergo surgery.</p> <p>Methods</p> <p>382 elective patients referred for consideration of cardiac surgery to one of six consultant cardiac surgeons at Wythenshawe Hospital during a one year period from were included in the study. Data for those patients who underwent an operation were collected prospectively in a cardiac surgery database. The case notes of those patients who did not undergo an operation were reviewed to establish reasons given by surgeons for not operating. Patients were followed up to determine vital status at the end of the study period.</p> <p>Results</p> <p>333 (87.2%) patients underwent an operation and 49 (12.8%) did not. 68% of patients turned down were thought to be too high-risk. 14% of patients did not fulfill symptomatic or prognostic criteria for surgery and in 8% of patients coronary artery surgery was thought ineffective due to poor distal vessels. 6% of patients declined an operation and 4% were thought to be more suitable for coronary angioplasty. Patients turned down for surgery had more renal dysfunction (p = 0.017), respiratory disease (p < 0.001) and peripheral vascular disease (p < 0.001), were more likely to have undergone prior heart surgery (p < 0.001) and to have poor left ventricular function (p = 0.003). Patients turned down for surgery had significantly higher EuroSCORE values compared to patients who underwent an operation: 5 versus 4 (p = 0.006). Freedom from death in the patients turned down for surgery at 1-, 6-, 12- and 24-months was 95.9%, 91.8%, 83.7% and 71.4% respectively, compared with 97.9%, 96.7%, 96.4% and 94.5% for the patients who underwent an operation (p < 0.001 [log-rank]). 14 of the 15 deaths that occurred in the turned down group occurred in the category considered too high-risk for surgery.</p> <p>Conclusion</p> <p>12.8% of patients referred for consideration of cardiac surgery did not undergo an operation. Two thirds of patients not accepted for surgery were thought too high risk. Those patients who did not undergo an operation had a significantly worse mortality.</p

    Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genome-centric metagenomics

    Get PDF
    Methanogenic and methanotrophic archaea play important roles in the global flux of methane. Culture-independent approaches are providing deeper insight into the diversity and evolution of methane-metabolizing microorganisms, but, until now, no compelling evidence has existed for methane metabolism in archaea outside the phylum Euryarchaeota. We performed metagenomic sequencing of a deep aquifer, recovering two near-complete genomes belonging to the archaeal phylum Bathyarchaeota (formerly known as the Miscellaneous Crenarchaeotal Group). These genomes contain divergent homologs of the genes necessary for methane metabolism, including those that encode the methyl–coenzyme M reductase (MCR) complex. Additional non-euryarchaeotal MCR-encoding genes identified in a range of environments suggest that unrecognized archaeal lineages may also contribute to global methane cycling. These findings indicate that methane metabolism arose before the last common ancestor of the Euryarchaeota and Bathyarchaeota

    Forces During Bacteriophage DNA Packaging and Ejection

    Get PDF
    The conjunction of insights from structural biology, solution biochemistry, genetics and single molecule biophysics has provided a renewed impetus for the construction of quantitative models of biological processes. One area that has been a beneficiary of these experimental techniques is the study of viruses. In this paper we describe how the insights obtained from such experiments can be utilized to construct physical models of processes in the viral life cycle. We focus on dsDNA bacteriophages and show that the bending elasticity of DNA and its electrostatics in solution can be combined to determine the forces experienced during packaging and ejection of the viral genome. Furthermore, we quantitatively analyze the effect of fluid viscosity and capsid expansion on the forces experienced during packaging. Finally, we present a model for DNA ejection from bacteriophages based on the hypothesis that the energy stored in the tightly packed genome within the capsid leads to its forceful ejection. The predictions of our model can be tested through experiments in vitro where DNA ejection is inhibited by the application of external osmotic pressure

    The Space Density of Intermediate-redshift, Extremely Compact, Massive Starburst Galaxies

    Get PDF
    © 2022. The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/https://creativecommons.org/licenses/by/4.0/We present a measurement of the intrinsic space density of intermediate-redshift (z ∌ 0.5), massive (M * ∌ 1011 M ⊙), compact (R e ∌ 100 pc) starburst (ÎŁSFR ∌ 1000 M ⊙ yr−1 kpc−1) galaxies with tidal features indicative of them having undergone recent major mergers. A subset of them host kiloparsec-scale, > 1000 km s−1 outflows and have little indication of AGN activity, suggesting that extreme star formation can be a primary driver of large-scale feedback. The aim for this paper is to calculate their space density so we can place them in a better cosmological context. We do this by empirically modeling the stellar populations of massive, compact starburst galaxies. We determine the average timescale on which galaxies that have recently undergone an extreme nuclear starburst would be targeted and included in our spectroscopically selected sample. We find that massive, compact starburst galaxies targeted by our criteria would be selectable for ∌148−24+27 Myr and have an intrinsic space density nCS∌(1.1−0.3+0.5)×10−6Mpc−3 . This space density is broadly consistent with our z ∌ 0.5 compact starbursts being the most extremely compact and star-forming low-redshift analogs of the compact star-forming galaxies in the early universe, as well as them being the progenitors to a fraction of intermediate-redshift, post-starburst, and compact quiescent galaxies.Peer reviewe

    The Ionization and Dynamics of the Makani Galactic Wind

    Get PDF
    © 2023 The Author(s). Published by the American Astronomical Society. This is an open access article distributed under the Creative Commons Attribution License, to view a copy of the license, see: https://creativecommons.org/licenses/by/4.0/The Makani galaxy hosts the poster child of a galactic wind on scales of the circumgalactic medium. It consists of a two-episode wind in which the slow, outer wind originated 400 Myr ago (Episode I; R I = 20 − 50 kpc) and the fast, inner wind is 7 Myr old (Episode II; R II = 0 − 20 kpc). While this wind contains ionized, neutral, and molecular gas, the physical state and mass of the most extended phase—the warm, ionized gas—are unknown. Here we present Keck optical spectra of the Makani outflow. These allow us to detect hydrogen lines out to r = 30–40 kpc and thus constrain the mass, momentum, and energy in the wind. Many collisionally excited lines are detected throughout the wind, and their line ratios are consistent with 200–400 km s−1 shocks that power the ionized gas, with v shock = σ wind. Combining shock models, density-sensitive line ratios, and mass and velocity measurements, we estimate that the ionized mass and outflow rate in the Episode II wind could be as high as those of the molecular gas: MIIHII∌MIIH2=(1−2)×109M⊙ and dM/dtIIHII∌dM/dtIIH2=170−250M⊙ yr−1. The outer wind has slowed, so that dM/dtIHII∌10M⊙ yr−1, but it contains more ionized gas, MIHII=5×109 M ⊙. The momentum and energy in the recent Episode II wind imply a momentum-driven flow (p “boost” ∌7) driven by the hot ejecta and radiation pressure from the Eddington-limited, compact starburst. Much of the energy and momentum in the older Episode I wind may reside in a hotter phase, or lie further into the circumgalactic medium.Peer reviewe

    Physical Properties of Massive Compact Starburst Galaxies with Extreme Outflows

    Get PDF
    © 2021. The Author(s). Published by the American Astronomical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 licence. https://creativecommons.org/licenses/by/4.0/We present results on the nature of extreme ejective feedback episodes and the physical conditions of a population of massive (M * ∌ 1011 M ⊙), compact starburst galaxies at z = 0.4–0.7. We use data from Keck/NIRSPEC, SDSS, Gemini/GMOS, MMT, and Magellan/MagE to measure rest-frame optical and near-IR spectra of 14 starburst galaxies with extremely high star formation rate surface densities (mean ÎŁSFR ∌ 2000 M ⊙ yr−1 kpc−2) and powerful galactic outflows (maximum speeds v 98 ∌ 1000–3000 km s−1). Our unique data set includes an ensemble of both emission ([O ii] λλ3726,3729, HÎČ, [O iii] λλ4959,5007, Hα, [N ii] λλ6549,6585, and [S ii] λλ6716,6731) and absorption (Mg ii λλ2796,2803, and Fe ii λ2586) lines that allow us to investigate the kinematics of the cool gas phase (T ∌ 104 K) in the outflows. Employing a suite of line ratio diagnostic diagrams, we find that the central starbursts are characterized by high electron densities (median n e ∌ 530 cm−3), and high metallicity (solar or supersolar). We show that the outflows are most likely driven by stellar feedback emerging from the extreme central starburst, rather than by an AGN. We also present multiple intriguing observational signatures suggesting that these galaxies may have substantial Lyman continuum (LyC) photon leakage, including weak [S ii] nebular emission lines. Our results imply that these galaxies may be captured in a short-lived phase of extreme star formation and feedback where much of their gas is violently blown out by powerful outflows that open up channels for LyC photons to escape.Peer reviewedFinal Published versio

    Atom and step economical synthesis of acyclic quaternary centers via iridium-catalyzed hydroarylative cross-coupling of 1,1-disubstituted alkenes

    Get PDF
    Quaternary benzylic centers are accessed with high atom and step economy by Ir-catalyzed alkene hydroarylation. These studies provide unique examples of the use of non-polarized 1,1-disubstituted alkenes in branch selective Murai-type hydro(hetero)arylations. Detailed mechanistic studies have been undertaken, and these indicate that the first irreversible step is the demanding alkene carbometallation process. Structure-reactivity studies show that the efficiency of this is critically dependent on key structural features of the ligand. Computational studies have been undertaken to rationalize this experimental data, showing how more sterically demanding ligands reduce the reaction barrier via predistortion of the reacting intermediate. The key insight disclosed here will underpin the ongoing development of increasingly sophisticated branch selective Murai hydroarylations
    • 

    corecore