60 research outputs found

    Combining experiment and energy landscapes to explore anaerobic heme breakdown in multifunctional hemoproteins

    Get PDF
    To survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe2+ ion via a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds via NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria. HemS, from Yersinia enterocolitica, is the main focus of this work, along with HmuS (Yersinia pestis), ChuS (Escherichia coli) and ShuS (Shigella dysenteriae). We combine experiments, Energy Landscape Theory, and a bioinformatic investigation to place these homologues within a wider phylogenetic context. A subset of these hemoproteins are known to bind certain DNA promoter regions, suggesting not only that they can catalytically degrade heme, but that they are also involved in transcriptional modulation responding to heme flux. Many of the bacterial species responsible for these hemoproteins (including those that produce HemS, ChuS and ShuS) are known to specifically target oxygen-depleted regions of the gastrointestinal tract. A deeper understanding of anaerobic heme breakdown processes exploited by these pathogens could therefore prove useful in the development of future strategies for disease prevention

    Epistemological beliefs of European physiotherapists – a multi-countrycross-cultural adaptation for the DEBQ and the CAEB questionnaires

    Get PDF
    [Abstract] This article assumes that epistemological beliefs of physiotherapists are an important determinant in improving the concept of evidence-based practice. Little research has been done on epistemological beliefs in physiotherapy. In order to measure the sophistication of epistemological beliefs in future research, two complementary questionnaires (DEBQ and CAEB) were cross-culturally adapted in nine different countries and seven languages in Europe. A standardized seven-step guideline was used to translate and culturally validate the questionnaires. The questionnaires were distributed in the respective countries, resulting in 1386 participants. The psychometric values were analysed in order to verify consistency and validity. Based on the validation process, the instruments are considered to be validly adapted for the countries involved. The uniformity in the adaptation process allows for future comparison of the countries

    Multivalent bicyclic peptides are an effective antiviral modality that can potently inhibit SARS-CoV-2.

    Get PDF
    COVID-19 has stimulated the rapid development of new antibody and small molecule therapeutics to inhibit SARS-CoV-2 infection. Here we describe a third antiviral modality that combines the drug-like advantages of both. Bicycles are entropically constrained peptides stabilized by a central chemical scaffold into a bi-cyclic structure. Rapid screening of diverse bacteriophage libraries against SARS-CoV-2 Spike yielded unique Bicycle binders across the entire protein. Exploiting Bicycles' inherent chemical combinability, we converted early micromolar hits into nanomolar viral inhibitors through simple multimerization. We also show how combining Bicycles against different epitopes into a single biparatopic agent allows Spike from diverse variants of concern (VoC) to be targeted (Alpha, Beta, Delta and Omicron). Finally, we demonstrate in both male hACE2-transgenic mice and Syrian golden hamsters that both multimerized and biparatopic Bicycles reduce viraemia and prevent host inflammation. These results introduce Bicycles as a potential antiviral modality to tackle new and rapidly evolving viruses

    Action to protect the independence and integrity of global health research

    Get PDF
    Storeng KT, Abimbola S, Balabanova D, et al. Action to protect the independence and integrity of global health research. BMJ GLOBAL HEALTH. 2019;4(3): e001746
    corecore