27 research outputs found

    How is an ant navigation algorithm affected by visual parameters and ego-motion?

    Get PDF
    Ants typically use path integration and vision for navigation when the environment precludes the use of pheromones for trails. Recent simulations have been able to accurately mimic the retinotopic navigation behaviour of these ants using simple models of movement and memory of unprocessed visual images. Naturally it is interesting to test these navigation algorithms in more realistic circumstances, particularly with actual route data from the ant, in an accurate facsimile of the ant world and with visual input that draws on the characteristics of the animal. While increasing the complexity of the visual processing to include skyline extraction, inhomogeneous sampling and motion processing was conjectured to improve the performance of the simulations, the reverse appears to be the case. Examining closely the assumptions about motion, analysis of ants in the field shows that they experience considerable displacement of the head which when applied to the simulation leads to significant degradation in performance. The family of simulations rely upon continuous visual monitoring of the scene to determine heading and it was decided to test whether the animals were similarly dependent on this input. A field study demonstrated that ants with only visual navigation cues can return the nest when largely facing away from the direction of travel (moving backwards) and so it appears that ant visual navigation is not a process of continuous retinotopic image matching. We conclude ants may use vision to determine an initial heading by image matching and then continue to follow this direction using their celestial compass, or they may use a rotationally invariant form of the visual world for continuous course correction

    Sky segmentation with ultraviolet images can be used for navigation

    Get PDF
    Inspired by ant navigation, we explore a method for sky segmentation using ultraviolet (UV) light. A standard camera is adapted to allow collection of outdoor images containing light in the visible range, in UV only and in green only. Automatic segmentation of the sky region using UV only is significantly more accurate and far more consistent than visible wavelengths over a wide range of locations, times and weather conditions, and can be accomplished with a very low complexity algorithm. We apply this method to obtain compact binary (sky vs non-sky) images from panoramic UV images taken along a 2km route in an urban environment. Using either sequence SLAM or a visual compass on these images produces reliable localisation and orientation on a subsequent traversal of the route under different weather conditions

    Ant homing ability is not diminished when traveling backwards

    Get PDF
    Ants are known to be capable of homing to their nest after displacement to a novel location. This is widely assumed to involve some form of retinotopic matching between their current view and previously experienced views. One simple algorithm proposed to explain this behavior is continuous retinotopic alignment, in which the ant constantly adjusts its heading by rotating to minimize the pixel-wise difference of its current view from all views stored while facing the nest. However, ants with large prey items will often drag them home while facing backwards. We tested whether displaced ants (Myrmecia croslandi) dragging prey could still home despite experiencing an inverted view of their surroundings under these conditions. Ants moving backwards with food took similarly direct paths to the nest as ants moving forward without food, demonstrating that continuous retinotopic alignment is not a critical component of homing. It is possible that ants use initial or intermittent retinotopic alignment, coupled with some other direction stabilizing cue that they can utilize when moving backward. However, though most ants dragging prey would occasionally look toward the nest, we observed that their heading direction was not noticeably improved afterwards. We assume ants must use comparison of current and stored images for corrections of their path, but suggest they are either able to chose the appropriate visual memory for comparison using an additional mechanism; or can make such comparisons without retinotopic alignment

    Vision for navigation: what can we learn from ants?

    Get PDF
    The visual systems of all animals are used to provide information that can guide behaviour. In some cases insects demonstrate particularly impressive visually-guided behaviour and then we might reasonably ask how the low-resolution vision and limited neural resources of insects are tuned to particular behavioural strategies. Such questions are of interest to both biologists and to engineers seeking to emulate insectlevel performance with lightweight hardware. One behaviour that insects share with many animals is the use of learnt visual information for navigation. Desert ants, in particular, are expert visual navigators. Across their foraging life, ants can learn long idiosyncratic foraging routes. What's more, these routes are learnt quickly and the visual cues that define them can be implemented for guidance independently of other social or personal information. Here we review the style of visual navigation in solitary foraging ants and consider the physiological mechanisms that underpin it. Our perspective is to consider that robust navigation comes from the optimal interaction between behavioural strategy, visual mechanisms and neural hardware.We consider each of these in turn, highlighting the value of ant-like mechanisms in biomimetic endeavours

    How variation in head pitch could affect image matching algorithms for ant navigation

    Get PDF
    Desert ants are a model system for animal navigation, using visual memory to follow long routes across both sparse and cluttered environments. Most accounts of this behaviour assume retinotopic image matching, e.g. recovering heading direction by finding a minimum in the image difference function as the viewpoint rotates. But most models neglect the potential image distortion that could result from unstable head motion. We report that for ants running across a short section of natural substrate, the head pitch varies substantially: by over 20 degrees with no load; and 60 degrees when carrying a large food item. There is no evidence of head stabilisation. Using a realistic simulation of the ant’s visual world, we demonstrate that this range of head pitch significantly degrades image matching. The effect of pitch variation can be ameliorated by a memory bank of densely sampled along a route so that an image sufficiently similar in pitch and location is available for comparison. However, with large pitch disturbance, inappropriate memories sampled at distant locations are often recalled and navigation along a route can be adversely affected. Ignoring images obtained at extreme pitches, or averaging images over several pitches, does not significantly improve performance

    Using an insect mushroom body circuit to encode route memory in complex natural environments

    Get PDF
    Ants, like many other animals, use visual memory to follow extended routes through complex environments, but it is unknown how their small brains implement this capability. The mushroom body neuropils have been identified as a crucial memory circuit in the insect brain, but their function has mostly been explored for simple olfactory association tasks. We show that a spiking neural model of this circuit originally developed to describe fruitfly (Drosophila melanogaster) olfactory association, can also account for the ability of desert ants (Cataglyphis velox) to rapidly learn visual routes through complex natural environments. We further demonstrate that abstracting the key computational principles of this circuit, which include one-shot learning of sparse codes, enables the theoretical storage capacity of the ant mushroom body to be estimated at hundreds of independent images

    Ressources des élèves, situation d'apprentissage et co-observation

    No full text
    Analyse d'une situation d'enseignement mise en place par un professeur stagiaire à partir d'une transcription préalable d'une consigne qu'il donne à ses élèves de seconde en lycée professionnel, lors de la 3e séance d'un cycle badminton

    Les démarches d'enseignement des jeunes professeurs : aspects implicites et voies de formation

    No full text
    Repérage des éléments implicites présents dans l'enseignement d'un professeur, les 'points aveugles' de la pratique professionnelle : non-dit des consignes adressées aux élèves, par exemple. Analyse de préparations écrites de leçons. L'explicitation par l'enseignant des contenus d'enseignement comme des méthodes pour les faire apprendre semble être une condition nécessaire à l'efficacité des apprentissages des élèves

    L'autonomie, un apprentissage : mises en perspective

    No full text
    Contributions regroupées : 'L'association sportive : un espace d'éducation et de formation à réinvestir' - 'L'autonomie comme principe éducatif : l'exemple du lycée expérimental de Saint-Nazaire' (avec des expériences interdisciplinaires d'autonomie incluant l'EPS) - 'Autonomie et méthodes d'enseignement' - 'Le pari possible de la formation initiale : l'autonomie professionnelle du professeur stagiaire'
    corecore