56 research outputs found

    L’échange parcellaire : une nouvelle étape dans l’aménagement foncier de l’Ouest français

    Get PDF
    Depuis les années 1960, la superficie des exploitations agricoles du Grand-Ouest n’a cessé d’augmenter. Dans la course à l’agrandissement, les conflits d’usages pour le foncier ont contraint les exploitants à reprendre des terres éloignées de leur siège d’exploitation. L’organisation parcellaire qui en résulte rend la gestion des fermes de plus en plus complexe. Alors que les remembrements (nommés Aménagements Fonciers Agricoles et Forestiers depuis 2005) ont longtemps été mobilisés pour réorganiser le parcellaire, ils se font de plus en plus rares et semblent laisser la place à une nouvelle forme d’intervention : l’échange parcellaire. Cette démarche repose sur la participation volontaire des exploitants et ne s’appuie plus sur la maîtrise d’ouvrage du conseil départemental, mais sur l’animation des Chambres d’agriculture. À partir d’une observation participante dans plusieurs opérations en cours ainsi qu’une dizaine d’entretiens menés auprès d’exploitants, cet article présente cette dynamique et questionne l’implication nouvelle des acteurs, ses effets sur la restructuration parcellaire et sur les rapports sociaux entre exploitants. La relative souplesse de cet outil, qui contraste avec le cadre autoritaire du remembrement, semble conditionner le profil des participants et générer des rapports de force entre ces derniers nous conduisant à interroger l’efficacité d’une telle démarche.Since the 1960s, the size of farms in Western France has been gradually increasing. Conflicts regarding land use have forced farmers to acquire more remote parcels of land, thus fragmenting their estates and complicating their day-to-day activities. However, land consolidation (known in France as aménagement foncier agricole et forestier since 2005) is being used less and less today. Instead, a new type of intervention is increasingly being implemented: plot exchanges. This approach is based on the voluntary participation of farmers. Until recently, such exchanges were coordinated by the conseils departementaux (the equivalent of county councils in France), but they are now the responsibility of local chambres d’agriculture (chambers of agriculture). Based both on participant observations of plot-exchange meetings and a dozen or so interviews with farmers who have taken part in them, this article aims to describe this new trend and characterize the consequences of the involvement of new actors. To this end, we shall examine both the social relations between actors during these meetings and their results in terms of plot reorganization. Unlike the strict framework of land consolidation, the flexibility afforded by plot exchanges seems to have the effect of predetermining participant profiles and fostering certain power relationships between farmers, thus calling into question the effectiveness of this approach

    IPBES Invasive Alien Species Assessment: Summary for Policymakers

    Get PDF
    Summary for Policymakers of the Thematic Assessment Report on Invasive Alien Species and their Control of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services

    Identifying priorities, targets, and actions for the long-term social and ecological management of invasive non-native species

    Get PDF
    Funding: The research and the workshop (December-2019; Centro Científico Tecnológico Patagonia Norte, San Carlos de Bariloche, Argentina) described in this manuscript were funded by the CONTAIN programme under the Latin American Biodiversity Programme as part of the Newton Fund (NE/S011641/1), with contributions from NERC, the Argentine National Scientific & Technical Research Council (CONICET,-2019-74-APN-DIR#CONICET), the Brazilian São Paulo Research Foundation (FAPESP 2018/14995-8), and the Chilean Agency for Research and Development (ANID; formerly CONICYT). Acknowledgments Thanks to the colleagues who replied to our informal questions about the usefulness of the methods and procedures described here. This informal survey of colleagues to obtain an initial critical evaluation was aligned with the policies relevant to the authors who contacted the participants. No one else had access to the responses and identities of the respondents. Servicio Agrícola y Ganadero, Gobierno de Chile, is one of the CONTAIN project partners, and it is represented by ER in this paper. However, the opinions and results presented in this document are entirely those of ER and may not represent SAG position on the topic. The Associate Editor and two reviewers provided feedback that helped improve a previous version of the manuscript. Open access via Springer compact agreementPeer reviewedPublisher PD

    Management policies for invasive alien species: Adressing the impacts rather than the species

    Get PDF
    Effective long-term management is needed to address the impacts of invasive alien species (IAS) that cannot be eradicated. We describe the fundamental characteristics of long-term management policies for IAS, diagnose a major shortcoming, and outline how to produce effective IAS management. Key international and transnational management policies conflate addressing IAS impacts with controlling IAS populations. This serious purpose–implementation gap can preclude the development of broader portfolios of interventions to tackle IAS impacts. We posit that IAS management strategies should directly address impacts via impact-based interventions, and we propose six criteria to inform the choice of these interventions. We review examples of interventions focused on tackling IAS impacts, including IAS control, which reveal the range of interventions available and their varying effectiveness in counteracting IAS impacts. As the impacts caused by IAS increase globally, stakeholders need to have access to a broader and more effective set of tools to respond.Fil: García Díaz, Pablo. University of Aberdeen; Reino UnidoFil: Cassey, Philip. University of Adelaide; AustraliaFil: Norbury, Grant. Crown Research Institutes. Landcare Research; Nueva ZelandaFil: Lambin, Xavier. University of Aberdeen; Reino UnidoFil: Montti, Lia Fernanda. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones Marinas y Costeras. Universidad Nacional de Mar del Plata. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Marinas y Costeras; ArgentinaFil: Pizarro, J. Cristóbal. Universidad de Concepción; ChileFil: Powell, Priscila Ana. Universidad Nacional de Tucumán. Instituto de Ecología Regional. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Ecología Regional; Argentina. Universidad Nacional de Tucumán. Facultad de Ciencias Naturales e Instituto Miguel Lillo; ArgentinaFil: Burslem, David F. R. P.. University of Aberdeen; Reino UnidoFil: Cava, Mário. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Damasceno, Gabriella. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Fasola, Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentina. Asociación Ornitológica del Plata; ArgentinaFil: Fidelis, Alessandra. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Huerta, Magdalena F.. Universidad Austral de Chile; Chile. Universidad de Concepción; ChileFil: Langdon, Bárbara. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma | Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma.; ArgentinaFil: Linardaki, Eirini. University of Aberdeen; Reino UnidoFil: Moyano, Jaime. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma | Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma.; ArgentinaFil: Nuñez, Martin Andres. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma | Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma.; ArgentinaFil: Pauchard, Aníbal. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - Patagonia Norte. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma | Universidad Nacional del Comahue. Centro Regional Universitario Bariloche. Instituto de Investigaciones En Biodiversidad y Medioambiente. Subsede San Martín de Los Andes-inibioma.; ArgentinaFil: Phimister, Euan. University of Aberdeen; Reino UnidoFil: Raffo, Eduardo. Gobierno de Chile. Servicio Agrícola y Ganadero; ChileFil: Roesler, Ignacio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Rodríguez Jorquera, Ignacio. Universidad Austral de Chile; Chile. Universidad de Concepción; ChileFil: Tomasevic, Jorge A.. Universidad Austral de Chile; Chile. Universidad de Concepción; Chil

    Scientists\u27 Warning on Invasive Alien Species

    Get PDF
    Biological invasions are a global consequence of an increasingly connected world and the rise in human population size. The numbers of invasive alien species - the subset of alien species that spread widely in areas where they are not native, affecting the environment or human livelihoods - are increasing. Synergies with other global changes are exacerbating current invasions and facilitating new ones, thereby escalating the extent and impacts of invaders. Invasions have complex and often immense long-term direct and indirect impacts. In many cases, such impacts become apparent or problematic only when invaders are well established and have large ranges. Invasive alien species break down biogeographic realms, affect native species richness and abundance, increase the risk of native species extinction, affect the genetic composition of native populations, change native animal behaviour, alter phylogenetic diversity across communities, and modify trophic networks. Many invasive alien species also change ecosystem functioning and the delivery of ecosystem services by altering nutrient and contaminant cycling, hydrology, habitat structure, and disturbance regimes. These biodiversity and ecosystem impacts are accelerating and will increase further in the future. Scientific evidence has identified policy strategies to reduce future invasions, but these strategies are often insufficiently implemented. For some nations, notably Australia and New Zealand, biosecurity has become a national priority. There have been long-term successes, such as eradication of rats and cats on increasingly large islands and biological control of weeds across continental areas. However, in many countries, invasions receive little attention. Improved international cooperation is crucial to reduce the impacts of invasive alien species on biodiversity, ecosystem services, and human livelihoods. Countries can strengthen their biosecurity regulations to implement and enforce more effective management strategies that should also address other global changes that interact with invasions

    Widespread plant species : natives versus aliens in our changing world

    Get PDF
    CITATION: Stohlgren, T.J. et al. 2011. Widespread plant species: Natives vs. aliens in our changing world. Biological Invasions, 13:1931-1944. doi:10.1007/s10530-011-0024-9The original publication is available at https://www.springer.com/journal/10530Estimates of the level of invasion for a region are traditionally based on relative numbers of native and alien species. However, alien species differ dramatically in the size of their invasive ranges. Here we present the first study to quantify the level of invasion for several regions of the world in terms of the most widely distributed plant species (natives vs. aliens). Aliens accounted for 51.3% of the 120 most widely distributed plant species in North America, 43.3% in New South Wales (Australia), 34.2% in Chile, 29.7% in Argentina, and 22.5% in the Republic of South Africa. However, Europe had only 1% of alien species among the most widespread species of the flora. Across regions, alien species relative to native species were either as well-distributed (10 comparisons) or more widely distributed (5 comparisons). These striking patterns highlight the profound contribution that widespread invasive alien plants make to floristic dominance patterns across different regions. Many of the most widespread species are alien plants, and, in particular, Europe and Asia appear as major contributors to the homogenization of the floras in the Americas. We recommend that spatial extent of invasion should be explicitly incorporated in assessments of invasibility, globalization, and risk assessments.Publisher’s versio

    Comparative patterns of plant invasions in the mediterranean biome

    Get PDF
    The objective of this work was to compare and contrast the patterns of alien plant invasions in the world’s five mediterranean-climate regions (MCRs). We expected landscape age and disturbance history to have bearing on levels of invasion. We assembled a database on naturalized alien plant taxa occurring in natural and semi-natural terrestrial habitats of all five regions (specifically Spain, Italy, Greece and Cyprus from the Mediterranean Basin, California, central Chile, the Cape Region of South Africa and Southwestern - SW Australia). We used multivariate (hierarchical clustering and NMDS ordination) trait and habitat analysis to compare characteristics of regions, taxa and habitats across the mediterranean biome. Our database included 1627 naturalized species with an overall low taxonomic similarity among the five MCRs. Herbaceous perennials were the most frequent taxa, with SW Australia exhibiting both the highest numbers of naturalized species and the highest taxonomic similarity (homogenization) among habitats, and the Mediterranean Basin the lowest. Low stress and highly disturbed habitats had the highest frequency of invasion and homogenization in all regions, and high natural stress habitats the lowest, while taxonomic similarity was higher among different habitats in each region than among regions. Our analysis is the first to describe patterns of species characteristics and habitat vulnerability for a single biome. We have shown that a broad niche (i.e. more than one habitat) is typical of naturalized plant species, regardless of their geographical area of origin, leading to potential for high homogenization within each region. Habitats of the Mediterranean Basin are apparently the most resistant to plant invasion, possibly because their landscapes are generally of relatively recent origin, but with a more gradual exposure to human intervention over a longer period

    Drivers of future alien species impacts: an expert‐based assessment

    Get PDF
    Understanding the likely future impacts of biological invasions is crucial yet highly challenging given the multiple relevant environmental, socio‐economic and societal contexts and drivers. In the absence of quantitative models, methods based on expert knowledge are the best option for assessing future invasion trajectories. Here, we present an expert assessment of the drivers of potential alien species impacts under contrasting scenarios and socioecological contexts through the mid‐21st century. Based on responses from 36 experts in biological invasions, moderate (20%–30%) increases in invasions, compared to the current conditions, are expected to cause major impacts on biodiversity in most socioecological contexts. Three main drivers of biological invasions—transport, climate change and socio‐economic change—were predicted to significantly affect future impacts of alien species on biodiversity even under a best‐case scenario. Other drivers (e.g. human demography and migration in tropical and subtropical regions) were also of high importance in specific global contexts (e.g. for individual taxonomic groups or biomes). We show that some best‐case scenarios can substantially reduce potential future impacts of biological invasions. However, rapid and comprehensive actions are necessary to use this potential and achieve the goals of the Post‐2020 Framework of the Convention on Biological Diversity

    Global maps of soil temperature

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
    corecore