128 research outputs found

    Mimicking acute airway tissue damage using femtosecond laser nanosurgery in airway organoids

    Get PDF
    Airway organoids derived from adult murine epithelial cells represent a complex 3D in vitro system mimicking the airway epithelial tissue’s native cell composition and physiological properties. In combination with a precise damage induction via femtosecond laser-based nanosurgery, this model might allow for the examination of intra- and intercellular dynamics in the course of repair processes with a high spatio-temporal resolution, which can hardly be reached using in vivo approaches. For characterization of the organoids’ response to single or multiple-cell ablation, we first analyzed overall organoid survival and found that airway organoids were capable of efficiently repairing damage induced by femtosecond laser-based ablation of a single to ten cells within 24 h. An EdU staining assay further revealed a steady proliferative potential of airway organoid cells. Especially in the case of ablation of five cells, proliferation was enhanced within the first 4 h upon damage induction, whereas ablation of ten cells was followed by a slight decrease in proliferation within this time frame. Analyzing individual trajectories of single cells within airway organoids, we found an increased migratory behavior in cells within close proximity to the ablation site following the ablation of ten, but not five cells. Bulk RNA sequencing and subsequent enrichment analysis revealed the differential expression of sets of genes involved in the regulation of epithelial repair, distinct signaling pathway activities such as Notch signaling, as well as cell migration after laser-based ablation. Together, our findings demonstrate that organoid repair upon ablation of ten cells involves key processes by which native airway epithelial wound healing is regulated. This marks the herein presented in vitro damage model suitable to study repair processes following localized airway injury, thereby posing a novel approach to gain insights into the mechanisms driving epithelial repair on a single-cell level

    Investigation of risk factors for introduction of highly pathogenic avian influenza H5N1 infection among commercial turkey operations in the United States, 2022: a case-control study

    Get PDF
    Introduction: The 2022–2023 highly pathogenic avian influenza (HPAI) H5N1 outbreak in the United States (U.S.) is the largest and most costly animal health event in U.S. history. Approximately 70% of commercial farms affected during this outbreak have been turkey farms. Methods: We conducted a case-control study to identify potential risk factors for introduction of HPAI virus onto commercial meat turkey operations. Data were collected from 66 case farms and 59 control farms in 12 states. Univariate and multivariable analyses were conducted to compare management and biosecurity factors on case and control farms. Results: Factors associated with increased risk of infection included being in an existing control zone, having both brooders and growers, having toms, seeing wild waterfowl or shorebirds in the closest field, and using rendering for dead bird disposal. Protective factors included having a restroom facility, including portable, available to crews that visit the farm and workers having access and using a shower at least some of the time when entering a specified barn. Discussion: Study results provide a better understanding of risk factors for HPAI infection and can be used to inform prevention and control measures for HPAI on U.S. turkey farms

    Isospin Dependence in the Odd-Even Staggering of Nuclear Binding Energies

    Full text link
    The FRS-ESR facility at GSI provides unique conditions for precision measurements of large areas on the nuclear mass surface in a single experiment. Values for masses of 604 neutron-deficient nuclides (30<=Z<=92) were obtained with a typical uncertainty of 30 microunits. The masses of 114 nuclides were determined for the first time. The odd-even staggering (OES) of nuclear masses was systematically investigated for isotopic chains between the proton shell closures at Z=50 and Z=82. The results were compared with predictions of modern nuclear models. The comparison revealed that the measured trend of OES is not reproduced by the theories fitted to masses only. The spectral pairing gaps extracted from models adjusted to both masses, and density related observables of nuclei agree better with the experimental data.Comment: Physics Review Letters 95 (2005) 042501 http://link.aps.org/abstract/PRL/v95/e04250

    “One Health” or Three? Publication Silos Among the One Health Disciplines

    Get PDF
    The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation—especially along the veterinary/ecological research interface—remains

    First Measurement of Pure Electron Shakeoff in the β Decay of Trapped 6He+ Ions

    Get PDF
    Expérience GANIL/SPIRAL/LIRATThe electron shakeoff probability of 6Li2+ ions resulting from the β- decay of 6He+ ions has been measured with high precision using a specially designed recoil ion spectrometer. This is the first measurement of a pure electron shakeoff following nuclear β decay, not affected by multielectron processes such as Auger cascades. In this ideal textbook case for the application of the sudden approximation, the experimental ionization probability was found to be Psoexp=0.023 39(36) in perfect agreement with simple quantum mechanical calculations

    Theoretical Aspects of Science with Radioactive Nuclear Beams

    Get PDF
    Physics of radioactive nuclear beams is one of the main frontiers of nuclear science today. Experimentally, thanks to technological developments, we are on the verge of invading the territory of extreme N/Z ratios in an unprecedented way. Theoretically, nuclear exotica represent a formidable challenge for the nuclear many-body theories and their power to predict nuclear properties in nuclear terra incognita. It is important to remember that the lesson learned by going to the limits of the nuclear binding is also important for normal nuclei from the neighborhood of the beta stability valley. And, of course, radioactive nuclei are crucial astrophysically; they pave the highway along which the nuclear material is transported up in the proton and neutron numbers during the complicated synthesis process in stars.Comment: 26 ReVTeX pages, 11 Postscript figures, uses epsf.sty, to be published in: Theme Issue on Science with Beams of Radioactive Nuclei, Philosophical Transactions, ed. by W. Gelletl

    Shell structure of superheavy nuclei in self-consistent mean-field models

    Get PDF
    We study the extrapolation of nuclear shell structure to the region of superheavy nuclei in self-consistent mean-field models -- the Skyrme-Hartree-Fock approach and the relativistic mean-field model -- using a large number of parameterizations. Results obtained with the Folded-Yukawa potential are shown for comparison. We focus on differences in the isospin dependence of the spin-orbit interaction and the effective mass between the models and their influence on single-particle spectra. While all relativistic models give a reasonable description of spin-orbit splittings, all non-relativistic models show a wrong trend with mass number. The spin-orbit splitting of heavy nuclei might be overestimated by 40%-80%. Spherical doubly-magic superheavy nuclei are found at (Z=114,N=184), (Z=120,N=172) or (Z=126,N=184) depending on the parameterization. The Z=114 proton shell closure, which is related to a large spin-orbit splitting of proton 2f states, is predicted only by forces which by far overestimate the proton spin-orbit splitting in Pb208. The Z=120 and N=172 shell closures predicted by the relativistic models and some Skyrme interactions are found to be related to a central depression of the nuclear density distribution. This effect cannot appear in macroscopic-microscopic models which have a limited freedom for the density distribution only. In summary, our findings give a strong argument for (Z=120,N=172) to be the next spherical doubly-magic superheavy nucleus.Comment: 22 pages REVTeX, 16 eps figures, accepted for publication in Phys. Rev.

    Direct observation of long-lived isomers in 212^{212}Bi

    Get PDF
    Long-lived isomers in 212Bi have been studied following 238U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into the GSI storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of 212Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring halflife >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognised, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer de-excitation studies.Comment: published in PRL 110, 12250

    Observation of Non-Exponential Orbital Electron Capture Decays of Hydrogen-Like 140^{140}Pr and 142^{142}Pm Ions

    Get PDF
    We report on time-modulated two-body weak decays observed in the orbital electron capture of hydrogen-like 140^{140}Pr59+^{59+} and 142^{142}Pm60+^{60+} ions coasting in an ion storage ring. Using non-destructive single ion, time-resolved Schottky mass spectrometry we found that the expected exponential decay is modulated in time with a modulation period of about 7 seconds for both systems. Tentatively this observation is attributed to the coherent superposition of finite mass eigenstates of the electron neutrinos from the weak decay into a two-body final state.Comment: 12 pages, 5 figure

    Toward a global description of the nucleus-nucleus interaction

    Get PDF
    Extensive systematization of theoretical and experimental nuclear densities and of optical potential strengths exctracted from heavy-ion elastic scattering data analyses at low and intermediate energies are presented.The energy-dependence of the nuclear potential is accounted for within a model based on the nonlocal nature of the interaction.The systematics indicate that the heavy-ion nuclear potential can be described in a simple global way through a double-folding shape,which basically depends only on the density of nucleons of the partners in the collision.The poissibility of extracting information about the nucleon-nucleon interaction from the heavy-ion potential is investigated.Comment: 12 pages,12 figure
    • …
    corecore