104 research outputs found

    Probing the Nature of the Vela X Cocoon

    Full text link
    Vela X is a pulsar wind nebula (PWN) associated with the active pulsar B0833-45 and contained within the Vela supernova remnant (SNR). A collimated X-ray filament ("cocoon") extends south-southwest from the pulsar to the center of Vela X. VLA observations uncovered radio emission coincident with the eastern edge of the cocoon and H.E.S.S. has detected TeV γ\gamma-ray emission from this region as well. Using XMM-\textit{Newton} archival data, covering the southern portion of this feature, we analyze the X-ray properties of the cocoon. The X-ray data are best fit by an absorbed nonequilibrium plasma model with a powerlaw component. Our analysis of the thermal emission shows enhanced abundances of O, Ne, and Mg within the cocoon, indicating the presence of ejecta-rich material from the propagation of the SNR reverse shock, consistent with Vela X being a disrupted PWN. We investigate the physical processes that excite the electrons in the PWN to emit in the radio, X-ray and γ\gamma-ray bands. The radio and non-thermal X-ray emission can be explained by synchrotron emission. We model the γ\gamma-ray emission by Inverse Compton scattering of electrons off of cosmic microwave background (CMB) photons. We use a 3-component broken power law to model the synchrotron emission, finding an intrinsic break in the electron spectrum at ∼5×106\sim5 \times 10^{6} keV and a cooling break at ∼\sim 5.5 ×1010\times 10^{10} keV. This cooling break along with a magnetic field strength of 5 ×10−6\times 10^{-6} G indicate that the synchrotron break occurs at ∼\sim1 keV.Comment: accepted for publication to ApJ

    A Case Study of Small Scale Structure Formation in 3D Supernova Simulations

    Full text link
    It is suggested in observations of supernova remnants that a number of large- and small-scale structures form at various points in the explosion. Multidimensional modeling of core-collapse supernovae has been undertaken since SN1987A, and both simulations and observations suggest/show that Rayleigh-Taylor instabilities during the explosion is a main driver for the formation of structure in the remnants. We present a case study of structure formation in 3D in a \msol{15} supernova for different parameters. We investigate the effect of moderate asymmetries and different resolutions of the formation and morphology of the RT unstable region, and take first steps at determining typical physical quantities (size, composition) of arising clumps. We find that in this progenitor the major RT unstable region develops at the He/OC interface for all cases considered. The RT instabilities result in clumps that are overdense by 1-2 orders of magnitude with respect to the ambient gas, have size scales on the level of a few % of the remnant diameter, and are not diffused after the first ∼30\sim30 yrs of the remnant evolution, in the absence of a surrounding medium.Comment: 59 pages, 34 figure

    Chandra and XMM Observations of the Composite Supernova Remnant G327.1-1.1

    Full text link
    We present new X-ray imaging and spectroscopy of a composite supernova remnant G327.1-1.1 using the Chandra and XMM-Newton X-ray observatories. G327.1-1.1 has an unusual morphology consisting of a symmetric radio shell and an off center nonthermal component that indicates the presence of a pulsar wind nebula (PWN). Radio observations show a narrow finger of emission extending from the PWN structure towards the northwest. X-ray studies with ASCA, ROSAT, and BeppoSAX revealed elongated extended emission and a compact source at the tip of the finger that may be coincident with the actual pulsar. The high resolution Chandra observations provide new insight into the structure of the inner region of the remnant. The images show a compact source embedded in a cometary structure, from which a trail of X-ray emission extends in the southeast direction. The Chandra images also reveal two prong-like structures that appear to originate from the vicinity of the compact source and extend into a large bubble that is oriented in the north-west direction, opposite from the bright radio PWN. The emission from the entire radio shell is detected in the XMM data and can be characterized by a thermal plasma model with a temperature of 0.3 keV, which we use to estimate the physical properties of the remnant. The peculiar morphology of G327.1-1.1 may be explained by the emission from a moving pulsar and a relic PWN that has been disrupted by the reverse shock.Comment: 12 pages, 10 figures, 4 table

    A Dynamical Model for the Evolution of a Pulsar Wind Nebula inside a Non-Radiative Supernova Remnant

    Full text link
    A pulsar wind nebula inside a supernova remnant provides a unique insight into the properties of the central neutron star, the relativistic wind powered by its loss of rotational energy, its progenitor supernova, and the surrounding environment. In this paper, we present a new semi-analytic model for the evolution of such a pulsar wind nebula which couples the dynamical and radiative evolution of the pulsar wind nebulae, traces the evolution of the pulsar wind nebulae throughout the lifetime of the supernova remnant produced by the progenitor explosion, and predicts both the dynamical and radiative properties of the pulsar wind nebula during this period. We also discuss the expected evolution for a particular set of these parameters, and show it reproduces many puzzling features of known young and old pulsar wind nebulae. The model also predicts spectral features during different phases of its evolution detectable with new radio and gamma-ray observing facilities. Finally, this model has implications for determining if pulsar wind nebulae can explain the recent measurements of the cosmic ray positron fraction by PAMELA and the cosmic ray lepton spectrum by ATIC and HESS.Comment: To be submitted to the Astrophysical Journal. Figures are included as GIF files, and a version containing the high-resolution figures is available http://cosmo.nyu.edu/~jg168/pwn/ms.pd

    Breed specific factors influence embryonic lipid composition : comparison between Jersey and Holstein

    Get PDF
    Some embryos exhibit better survival potential to cryopreservation than others. The cause of such a phenotype is still unclear and may be due to cell damage during cryopreservation, resulting from overaccumulation and composition of lipids. In cattle embryos, in vitro culture conditions have been shown to impact the number of lipid droplets within blastomeres. Thus far, the impact of breed on embryonic lipid content has not been studied. In the present study were compared the colour, lipid droplet abundance, lipid composition, mitochondrial activity and gene expression of in vivo-collected Jersey breed embryos, which are known to display poor performance post-freezing, with those of in vivo Holstein embryos, which have good cryotolerance. Even when housed and fed under the same conditions, Jersey embryos were found to be darker and contain more lipid droplets than Holstein embryos, and this was correlated with lower mitochondrial activity. Differential expression of genes associated with lipid metabolism and differences in lipid composition were found. These results show genetic background can impact embryonic lipid metabolism and storage

    The White Dwarf in EM Cygni: Beyond The Veil

    Full text link
    We present a spectral analysis of the FUSE spectra of EM Cygni, a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of 4 individual exposures (orbits): two exposures, at orbital phases phi ~ 0.65 and phi ~ 0.90, have a lower flux; and two exposures, at orbital phases phi =0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximual, using the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40,000K, rotating at 100km/s. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 1.E-10 Msun/yr.In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated.Comment: accepted for publication in ApJ, 3 Tables, 12 Figures (including color figures), 33 pages in present format (possibly 10 pages in ApJ format

    Late-Time Evolution of Composite Supernova Remnants: Deep Chandra Observations and Hydrodynamical Modeling of a Crushed Pulsar Wind Nebula in SNR G327.1-1.1

    Get PDF
    In an effort to better understand the evolution of composite supernova remnants (SNRs) and the eventual fate of relativistic particles injected by their pulsars, we present a multifaceted investigation of the interaction between a pulsar wind nebula (PWN) and its host SNR G327.1-1.1. Our 350 ks Chandra X-ray observations of SNR G327.1-1.1 reveal a highly complex morphology; a cometary structure resembling a bow shock, prong-like features extending into large arcs in the SNR interior, and thermal emission from the SNR shell. Spectral analysis of the non-thermal emission offers clues about the origin of the PWN structures, while enhanced abundances in the PWN region provide evidence for mixing of supernova ejecta with PWN material. The overall morphology and spectral properties of the SNR suggest that the PWN has undergone an asymmetric interaction with the SNR reverse shock(RS) that can occur as a result of a density gradient in the ambient medium and or a moving pulsar that displaces the PWN from the center of the remnant. We present hydrodynamical simulations of G327.1-1.1 that show that its morphology and evolution can be described by a approx. 17,000 yr old composite SNR that expanded into a density gradient with an orientation perpendicular to the pulsar's motion. We also show that the RSPWN interaction scenario can reproduce the broadband spectrum of the PWN from radio to gamma-ray wavelengths. The analysis and modeling presented in this work have important implications for our general understanding of the structure and evolution of composite SNRs

    Core-Collapse Supernovae and Host Galaxy Stellar Populations

    Full text link
    We have used images and spectra of the Sloan Digital Sky Survey to examine the host galaxies of 519 nearby supernovae. The colors at the sites of the explosions, as well as chemical abundances, and specific star formation rates of the host galaxies provide circumstantial evidence on the origin of each supernova type. We examine separately SN II, SN IIn, SN IIb, SN Ib, SN Ic, and SN Ic with broad lines (SN Ic-BL). For host galaxies that have multiple spectroscopic fibers, we select the fiber with host radial offset most similar to that of the SN. Type Ic SN explode at small host offsets, and their hosts have exceptionally strongly star-forming, metal-rich, and dusty stellar populations near their centers. The SN Ic-BL and SN IIb explode in exceptionally blue locations, and, in our sample, we find that the host spectra for SN Ic-BL show lower average oxygen abundances than those for SN Ic. SN IIb host fiber spectra are also more metal-poor than those for SN Ib, although a significant difference exists for only one of two strong-line diagnostics. SN Ic-BL host galaxy emission lines show strong central specific star formation rates. In contrast, we find no strong evidence for different environments for SN IIn compared to the sites of SN II. Because our supernova sample is constructed from a variety of sources, there is always a risk that sampling methods can produce misleading results. We have separated the supernovae discovered by targeted surveys from those discovered by galaxy-impartial searches to examine these questions and show that our results do not depend sensitively on the discovery technique.Comment: Accepted by the Astrophysical Journal (22 July 2012), conclusions not changed, extended discussion of sample construction and updated SN spectroscopic type
    • …
    corecore