1,199 research outputs found
Mapping the interaction of B cell Leukemia 3 (BCL-3) and nuclear factor κB (NF-κB) p50 identifies a BCL-3-mimetic anti-inflammatory peptide
The NF-κB transcriptional response is tightly regulated by a number of processes including the phosphorylation, ubiquitination, and subsequent proteasomal degradation of NF-κB subunits. The IκB family protein BCL-3 stabilizes a NF-κB p50 homodimer·DNA complex through inhibition of p50 ubiquitination. This complex inhibits the binding of the transcriptionally active NF-κB subunits p65 and c-Rel on the promoters of NF-κB target genes and functions to suppress inflammatory gene expression. We have previously shown that the direct interaction between p50 and BCL-3 is required for BCL-3-mediated inhibition of pro-inflammatory gene expression. In this study we have used immobilized peptide array technology to define regions of BCl-3 that mediate interaction with p50 homodimers. Our data show that BCL-3 makes extensive contacts with p50 homodimers and in particular with ankyrin repeats (ANK) 1, 6, and 7, and the N-terminal region of Bcl-3. Using these data we have designed a BCL-3 mimetic peptide based on a region of the ANK1 of BCL-3 that interacts with p50 and shares low sequence similarity with other IκB proteins. When fused to a cargo carrying peptide sequence this BCL-3-derived peptide, but not a mutated peptide, inhibited Toll-like receptor-induced cytokine expression in vitro. The BCL-3 mimetic peptide was also effective in preventing inflammation in vivo in the carrageenan-induced paw edema mouse model. This study demonstrates that therapeutic strategies aimed at mimicking the functional activity of BCL-3 may be effective in the treatment of inflammatory disease
An investigation into the role of Bcl-3 in toll-like receptor signalling
Through the recognition of potentially harmful stimuli, Toll-like receptors (TLRs)
initiate the innate immune response and induce the expression of hundreds of
immune and pro-inflammatory genes. TLRs are critical in mounting a defence
against invading pathogens however, strict control of TLR signalling is vital to
prevent host damage from excessive or prolonged immune activation. In this thesis
the role of the IκB protein Bcl (B-cell lymphoma)-3 in the regulation of TLR
signalling is investigated. Bcl3-/- mice and cells are hyper responsive to TLR
stimulation and are defective in LPS tolerance. Bcl-3 interacts with and blocks the
ubiquitination of homodimers of the NF-κB subunit, p50. Through stabilisation of
inhibitory p50 homodimers, Bcl-3 negatively regulates NF-κB dependent
inflammatory gene transcription following TLR activation. Firstly, we investigated
the nature of the interaction between Bcl-3 and p50 and using peptide array
technology. Key amino acids required for the formation of the p50:Bcl-3
immunosuppressor complex were identified. Furthermore, we demonstrate for the
first time that interaction between Bcl-3 and p50 is necessary and sufficient for the
anti-inflammatory properties of Bcl-3. Using the data generated from peptide array
analysis we then generated cell permeable peptides designed to mimic Bcl-3
function and stabilise p50 homodimers. These Bcl-3 derived peptides are potent
inhibitors of NF-κB dependent transcription activity in vitro and provide a solid basis
for the development of novel gene-specific approaches in the treatment of
inflammatory diseases. Secondly, we demonstrate that Bcl-3 mediated regulation
of TLR signalling is not limited to NF-κB and identify the MAK3K Tumour Progression
Locus (Tpl)-2 as a new binding partner of Bcl-3. Our data establishes role for Bcl-3
as a negative regulator of the MAPK-ERK pathway
Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection
BACKGROUND: Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts. RESULTS: The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt) in length. They assembled into 1975 consensus sequences – 567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were subjected to digital Northern analysis and results on expression of 5 verified by qRT-PCR. CONCLUSION: 13% of the 1965 ESTs showing identity to the A. gambiae genome sequence represent novel genes. These, together with untranslated regions (UTR) present on many of the ESTs, will inform further genome annotation. We have identified 23 genes encoding products likely to be involved in regulating the cellular oxidative environment and 25 insect immunity genes. We also identified 25 genes as being up or down regulated following blood feeding and/or feeding with P. berghei infected blood relative to their expression levels in sugar fed females
The IκB-protein BCL-3 controls toll-like receptor-induced MAPK activity by promoting TPL-2 degradation in the nucleus
Proinflammatory responses induced by Toll-like receptors (TLRs) are dependent on the activation of the NF-ĸB and mitogen-activated protein kinase (MAPK) pathways, which coordinate the transcription and synthesis of proinflammatory cytokines. We demonstrate that BCL-3, a nuclear IĸB protein that regulates NF-ĸB, also controls TLR-induced MAPK activity by regulating the stability of the TPL-2 kinase. TPL-2 is essential for MAPK activation by TLR ligands, and the rapid proteasomal degradation of active TPL-2 is a critical mechanism limiting TLR-induced MAPK activity. We reveal that TPL-2 is a nucleocytoplasmic shuttling protein and identify the nucleus as the primary site for TPL-2 degradation. BCL-3 interacts with TPL-2 and promotes its degradation by promoting its nuclear localization. As a consequence, Bcl3−/− macrophages have increased TPL-2 stability following TLR stimulation, leading to increased MAPK activity and MAPK-dependent responses. Moreover, BCL-3–mediated regulation of TPL-2 stability sets the MAPK activation threshold and determines the amount of TLR ligand required to initiate the production of inflammatory cytokines. Thus, the nucleus is a key site in the regulation of TLR-induced MAPK activity. BCL-3 links control of the MAPK and NF-ĸB pathways in the nucleus, and BCL-3–mediated TPL-2 regulation impacts on the cellular decision to initiate proinflammatory cytokine production in response to TLR activation
Adsorbate-enhanced transport of metals on metal surfaces: Oxygen and sulfur on coinage metals
Coarsening (i.e., ripening) of single-atom-high, metal homoepitaxial islands provides a useful window on the mechanism and kinetics of mass transport at metal surfaces. This article focuses on this type of coarsening on the surfaces of coinage metals (Cu, Ag, Au), both clean and with an adsorbed chalcogen (O, S) present. For the clean surfaces, three aspects are summarized: (1) the balance between the two major mechanisms—Ostwald ripening (the most commonly anticipated mechanism) and Smoluchowski ripening—and how that balance depends on island size; (2) the nature of the mass transport agents, which are metal adatoms in almost all known cases; and (3) the dependence of the ripening kinetics on surface crystallography. Ripening rates are in the order (110)\u3e(111)\u3e(100), a feature that can be rationalized in terms of the energetics of key processes. This discussion of behavior on the clean surfaces establishes a background for understanding why coarsening can be accelerated by adsorbates. Evidence that O and S accelerate mass transport on Ag, Cu, and Au surfaces is then reviewed. The most detailed information is available for two specific systems, S/Ag (111) and S/Cu(111). Here, metal-chalcogen clusters are clearly responsible for accelerated coarsening. This conclusion rests partly on deductive reasoning, partly on calculations of key energetic quantities for the clusters (compared with quantities for the clean surfaces), and partly on direct experimental observations. In these two systems, it appears that the adsorbate, S, must first decorate—and, in fact, saturate—the edges of metal islands and steps, and then build up at least slightly in coverage on the terraces before acceleration begins. Acceleration can occur at coverages as low as a few thousandths to a few hundredths of a monolayer. Despite the significant recent advances in our understanding of these systems, many open questions remain. Among them is the identification of the agents of mass transport on crystallographically different surfaces e.g., 111, 110, and 100
Use of Non-Steroidal Anti-Inflammatory Drugs That Elevate Cardiovascular Risk: An Examination of Sales and Essential Medicines Lists in Low-, Middle-, and High-Income Countries
PMCID: PMC3570554This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Weeds in organic fertility-building leys:aspects of species richness and weed management
Legume-based leys (perennial sod crops) are an important component of fertility management in organic rotations in many parts of Europe. Despite their importance, however, relatively little is known about how these leys affect weed communities or how the specific composition of leys may contribute to weed management. To determine whether the choice of plant species in the ley affects weeds, we conducted replicated field trials at six locations in the UK over 24 months, measuring weed cover and biomass in plots sown with monocultures of 12 legume and 4 grass species and in plots sown with a mixture of 10 legume species and 4 grass species. Additionally, we monitored weed communities in leys on 21 organic farms across the UK either sown with a mixture of the project species or the farmers? own species mix. In total, 63 weed species were found on the farms, with the annuals Stellaria media, Sonchus arvensis, and Veronica persica being the most frequent species in the first year after establishment of the ley, while Stellaria media and the two perennials Ranunculus repens and Taraxacum officinale dominated the weed spectrum in the second year. Our study shows that organic leys constitute an important element of farm biodiversity. In both replicated and on-farm trials, weed cover and species richness were significantly lower in the second than in the first year, owing to lower presence of annual weeds in year two. In monocultures, meadow pea (Lathyrus pratensis) was a poor competitor against weeds, and a significant increase in the proportion of weed biomass was observed over time, due to poor recovery of meadow pea after mowing. For red clover (Trifolium pratense), we observed the lowest proportion of weed biomass in total biomass among the tested legume species. Crop biomass and weed biomass were negatively correlated across species. Residuals from the linear regression between crop biomass and weed biomass indicated that at similar levels of crop biomass, grasses had lower weed levels than legumes. We conclude that choice of crop species is an important tool for weed management in leys.authorsversionPeer reviewe
Effect of Inhibition of the Lysophosphatidic Acid Receptor 1 on Metastasis and Metastatic Dormancy in Breast Cancer
Background Previous studies identified the human nonmetastatic gene 23 (NME1, hereafter Nm23-H1) as the first metastasis suppressor gene. An inverse relationship between Nm23-H1 and expression of lysophosphatidic acid receptor 1 gene (LPAR1, also known as EDG2 or hereafter LPA1) has also been reported. However, the effects of LPA1 inhibition on primary tumor size, metastasis, and metastatic dormancy have not been investigated. Methods The LPA1 inhibitor Debio-0719 or LPA1 short hairpinned RNA (shRNA) was used. Primary tumor size and metastasis were investigated using the 4T1 spontaneous metastasis mouse model and the MDA-MB-231T experimental metastasis mouse model (n = 13 mice per group). Proliferation and p38 intracellular signaling in tumors and cell lines were determined by immunohistochemistry and western blot to investigate the effects of LPA1 inhibition on metastatic dormancy. An analysis of variance-based two-tailed t test was used to determine a statistically significant difference between treatment groups. Results In the 4T1 spontaneous metastasis mouse model, Debio-0719 inhibited the metastasis of 4T1 cells to the liver (mean = 25.2 liver metastases per histologic section for vehicle-treated mice vs 6.8 for Debio-0719-treated mice, 73.0% reduction, P < .001) and lungs (mean = 6.37 lesions per histologic section for vehicle-treated mice vs 0.73 for Debio-0719-treated mice, 88.5% reduction, P < .001), with no effect on primary tumor size. Similar results were observed using the MDA-MB-231T experimental pulmonary metastasis mouse model. LPA1 shRNA also inhibited metastasis but did not affect primary tumor size. In 4T1 metastases, but not primary tumors, expression of the proliferative markers Ki67 and pErk was reduced by Debio-0719, and phosphorylation of the p38 stress kinase was increased, indicative of metastatic dormancy. Conclusion The data identify Debio-0719 as a drug candidate with metastasis suppressor activity, inducing dormancy at secondary tumor site
2018 Alumni Achievement Awards Presentation
2018 Alumni Achievement Awards presentation
KELT-7b: A hot Jupiter transiting a bright V=8.54 rapidly rotating F-star
We report the discovery of KELT-7b, a transiting hot Jupiter with a mass of
MJ, radius of RJ, and an orbital
period of days. The bright host star (HD33643;
KELT-7) is an F-star with , Teff K, [Fe/H]
, and . It has a mass of
Msun, a radius of Rsun, and
is the fifth most massive, fifth hottest, and the ninth brightest star known to
host a transiting planet. It is also the brightest star around which KELT has
discovered a transiting planet. Thus, KELT-7b is an ideal target for detailed
characterization given its relatively low surface gravity, high equilibrium
temperature, and bright host star. The rapid rotation of the star (
km/s) results in a Rossiter-McLaughlin effect with an unusually large amplitude
of several hundred m/s. We find that the orbit normal of the planet is likely
to be well-aligned with the stellar spin axis, with a projected spin-orbit
alignment of degrees. This is currently the second most
rapidly rotating star to have a reflex signal (and thus mass determination) due
to a planetary companion measured.Comment: Accepted to The Astronomical Journa
- …