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Abstract 27 

Legume-based leys (perennial sod crops) are an important component of fertility 28 

management in organic rotations in many parts of Europe. Despite their importance, 29 

however, relatively little is known about how these leys affect weed communities or how the 30 

specific composition of leys may contribute to weed management. To determine whether the 31 

choice of plant species in the ley affects weeds, we conducted replicated field trials at six 32 

locations in the UK over 24 months, measuring weed cover and biomass in plots sown with 33 

monocultures of 12 legume and 4 grass species and in plots sown with a mixture of 10 34 

legume species and 4 grass species. Additionally, we monitored weed communities in leys on 35 

21 organic farms across the UK either sown with a mixture of the project species or the 36 

farmers’ own species mix. In total, 63 weed species were found on the farms, with the 37 

annuals Stellaria media, Sonchus arvensis, and Veronica persica being the most frequent 38 

species in the first year after establishment of the ley, while Stellaria media and the two 39 

perennials Ranunculus repens and Taraxacum officinale dominated the weed spectrum in the 40 

second year. Our study shows that organic leys constitute an important element of farm 41 

biodiversity. In both replicated and on-farm trials, weed cover and species richness were 42 

significantly lower in the second than in the first year, owing to lower presence of annual 43 

weeds in year two. In monocultures, meadow pea (Lathyrus pratensis) was a poor competitor 44 

against weeds, and a significant increase in the proportion of weed biomass was observed 45 

over time, due to poor recovery of meadow pea after mowing. For red clover (Trifolium 46 

pratense), we observed the lowest proportion of weed biomass in total biomass among the 47 

tested legume species. Crop biomass and weed biomass were negatively correlated across 48 

species. Residuals from the linear regression between crop biomass and weed biomass 49 

indicated that at similar levels of crop biomass, grasses had lower weed levels than legumes. 50 



We conclude that choice of crop species is an important tool for weed management in leys. 51 

  52 

 53 

Keywords: clover, conservation, grass, legume, rotation, soil fertility, species richness, weed 54 

community 55 

 56 

Introduction 57 

In agricultural production, nitrogen is a key nutrient for achieving acceptable yields and crop 58 

quality [1]. Due to globally rising costs of mineral nitrogen fertilizer and concerns over the 59 

negative environmental impact of anthropogenic nitrogen [2, 3], agricultural policy makers, 60 

farmers and scientists are increasingly paying attention to the use of leguminous plants as an 61 

alternative source of nitrogen [4, 5]. Through their symbiosis with rhizobacteria, legumes are 62 

able to fix atmospheric nitrogen [6] and convert it to a form that is readily available to plants 63 

[7]. After incorporating (e.g. ploughing) legumes into the soil, nitrogen accumulated in the 64 

plants’ above-ground and below-ground residues is broken down by microbial activity and 65 

released for uptake by the following crop [8]. This use of legumes for fertility-building in the 66 

rotation is common in a variety of farming systems, e.g. where the use of mineral nitrogen 67 

fertilizer is considered to be too expensive, or, as in organic agriculture, where it is not 68 

permitted [9, 10]. Both grain legumes and forage legumes are used for fertility building. 69 

Because of its function as the main nutrient provider, the use of forage legumes in the 70 

rotation, which in Europe is frequently referred to as the ley phase, is of central importance 71 

for certain organic (and also increasingly non-organic) farming systems. 72 

In Western and Central Europe, organic farmers most frequently use grass-clover mixes for 73 

their leys, with white clover (Trifolium repens) and red clover (T. pratense) being popular 74 



legume species, and perennial ryegrass (Lolium perenne) and Italian ryegrass (L. multiflorum) 75 

as commonly chosen grass species [10]. Frequently, these leys are grazed or cut for silage or 76 

hay and incorporated into the soil by ploughing before sowing the next crop [11]. Depending 77 

on various factors such as climate and soil conditions, the suitability of the land for arable 78 

production and the presence of livestock on the farm, the ley phase on organic farms can vary 79 

in duration from short term (1-1.5 years) to longer term (around 5 years), but typically the ley 80 

is maintained for about 1.5 to 3 years [10, 12]. 81 

A key requirement for high ley performance (e.g. as measured by above-ground biomass 82 

cumulated over time), and the subsequent provision of nitrogen to the following crops is 83 

successful establishment of the ley [13]. Ideally, plants need to cover the ground quickly and 84 

establish well in a range of environmental conditions. However, according to a consultation 85 

of UK organic farmers conducted before the start of this study, white and red clover can be 86 

difficult to establish, especially under dry conditions [14]. During the establishment period, 87 

weeds can play an important antagonistic role by competing with the sown legumes for light, 88 

nutrients and water [15, 16]. Also, annual weeds that exploit the space left by poor ley 89 

establishment are more likely to contribute to the weed seed bank in the soil and may 90 

therefore become a problem later, in the crop following the ley. For these reasons, the ability 91 

to outcompete weeds, either through a high competitive ability and vigour or through 92 

allelopathy, is a desirable trait in legume species for use in leys.  93 

At the same time, the lack of tillage during the ley phase means that an important tool for 94 

weed control in organic farming, namely the mechanical destruction and burying of weeds 95 

[17], is not available. Also, lack of tillage means that weeds are not stimulated to germinate, 96 

so that weed seeds remain in the seed bank. On the other hand, leys can be repeatedly mown 97 

or grazed during the ley phase, which provides an alternative tool for weed management [18]. 98 

Using multiple species with complementary growth habits in a ley has the potential to further 99 



enhance weed suppression by exploiting differences in functional traits [19, 20]. For 100 

example, a fast growing early species that covers the ground quickly would complement a 101 

species that is taller and more competitive later in the season. Interestingly, leys appear to 102 

have the potential to increase weed seed numbers in the seed bank while simultaneously 103 

reducing weed emergence in the following crop; in a study on weeds in a wheat (Triticum 104 

aestivum) crop after lucerne (Medicago sativa)-grass leys or after potatoes (Solanum 105 

tuberosum) in Southern Germany, higher numbers of weed seeds in the seed bank were found 106 

after the ley than after potatoes, but a lower number of weeds emerged in the wheat following 107 

the ley [21]. However, careful management is necessary to prevent the build-up of perennial 108 

weeds such as docks (Rumex spp.) and creeping thistle (Cirsium arvense) in leys [22-24]. 109 

Such species pose a potential problem not only for ley performance but also for subsequent 110 

crops and can pose a serious threat to productivity of organic crops [23, 25].  111 

Despite the potentially negative effects of annual and perennial weeds in leys, the weed flora 112 

may simultaneously contribute to the farm’s biodiversity [26, 27]. Weeds provide vital 113 

resources for invertebrates and other wildlife [28-31], thereby also helping to regulate pest 114 

populations in agro-ecosystems [32]. In addition, some weed species in leys can be a source 115 

of mineral nutrients for livestock [33]. Thus, weeds can be seen to provide a range of 116 

ecosystem services. However, these same services may also be provided by the crop, 117 

especially if multiple crop species in a ley are used. For example, including species with a 118 

variety of flowering times would extend the period of nectar and pollen provision [34]. 119 

Ecological research on the function and diversity weeds in organic farming systems has so far 120 

mainly concentrated on weeds occurring in arable crops [35, 36]. Where research has 121 

investigated the weed suppression by various small-seeded legume species, the focus has 122 

mostly been on the use these legumes as short term cover crops [37, 38]. In contrast, current 123 

knowledge about weed diversity and weed control in organic rotational leys is limited. As 124 



part of a larger study on optimizing ley composition and management [39] we monitored the 125 

dynamics of weed communities in replicated and on-farm trials at multiple locations 126 

throughout the UK.  127 

Specifically, we asked: (1) Which legume and grass species typically used in legume-based 128 

leys show the highest competitive ability against weeds? (2) Which are the dominant weed 129 

species in typical organically managed leys in the UK? (3) What is the typical species 130 

richness of weeds (as measured by species richness) in organically managed leys? (4) Does 131 

crop species richness in the ley affect weed cover and weed species richness? 132 

  133 



Material and Methods 134 

Overview 135 

The study was conducted over two years, starting in spring 2009 and consisted of two main 136 

experimental series. In series I, we set up replicated field trials at six sites across the UK, 137 

evaluating various legume and grass species in monocultures and in a multi-species mixture 138 

of legumes and grasses (Tables 1 and 2).  139 

In series II, the same multi-species mixture was sown on 21 organic farms in the UK as non-140 

replicated 0.5 ha strips alongside farmer-chosen control leys (Table 3, Figure 1). In the 141 

following text we call the series I trials “replicated trials” and the series II trials “on-farm 142 

trials”. In both series, trials were performed only once per site. Therefore, effects of year-to-143 

year variation (e.g. effects of yearly differences in weather on weed emergence in the 144 

establishment phase of the ley) cannot be analysed. However, although effects of the age of 145 

the ley and the study year cannot be separated, this was at least partly compensated for by 146 

including a large number of trial sites in the study. 147 

  148 



Table 1: Legume and grass species included in the trials: Latin and common name, variety, seeding rate (kg/ha), seed weight (Thousand Kernel 149 

Weight, TKW in g) and seeding rate in the monoculture plots and in the All Species Mix (ASM).  150 

 

 

   

Seeding rate (kg/ha) 

 Abbreviation Latin name Common name Variety Inoculum* Monoculture ASM TKW (g) 

AC Trifolium hybridum L. Alsike clover Dawn C 10 1.25 0.7 

BT Lotus corniculatus L. Birdsfoot trefoil San Gabrielle - 12 2.50 1.2 

BM Medicago lupulina L. Black medic Virgo Pajberg L 15 2.50 1.6 

CC Trifolium incarnatum L. Crimson clover Coutea  - 18 2.25 3.1 

IR Lolium multiflorum Lam. Italian ryegrass Teana - 33 1.00 2.9 

LT Lotus pedunculatus Cav. Large birdsfoot trefoil Maku - 12 2.50 1.0 

LU Medicago sativa L. Lucerne La Bella de Campagnola L 20 2.50 2.4 

MF Festuca pratensis Huds. Meadow fescue Rossa - 25 1.25 2.1 

MP Lathyrus pratensis L. Meadow Pea no specified variety V 75 3.25 153.0 

PR Lolium perenne L. Perennial ryegrass Orion - 33 2.50 2.0 

RC Trifolium pratense L. Red clover Merviot C 18 2.50 1.8 

SF Onobrychis viciifolia Scop. Sainfoin Esparsette - 80 5.00 19.2 

TY Phleum pratense L. Timothy Dolina - 10 0.50 0.3 

WC Trifolium repens L. White clover Riesling C 10 1.50 0.5 

SC Melilotus alba Medik. White sweet clover no specified variety L 18 - 2.3 

WV Vicia sativa L. Winter vetch English Vetch V 100 - 41.0 

*Inoculum: Inoculation prior to sowing with Clover inoculum (C), Lucerne inoculum (L) and Vetch inoculum (V). Details see text. 151 

  152 



Table 2: Details of replicated trials: locations, plot sizes, sowing dates and pre-crops; *taken from one quadrat (50 x 50 cm) per plot; ** taken 153 

from three quadrats (each 50 x 50 cm) per plot 154 

Site Barrington Park Duchy (Rosewarne) IBERS Aberystwyth Rothamsted SAC Aberdeen Wakelyns Agroforestry 

Abbrevation B D I R S W 

North coordinate 51°49'52.2'' 50°13'38.2'' 52°25'48.1'' 51°48'38.6'' 57°11'05.6'' 52°21'36.7'' 

West coordinate 1°40'12.3'' 5°18'23.0'' 4°01'22.1'' 0°22'02.4'' 2°12'45.1'' -1°21'09.2'' 

Altitude (m) 150 42 29 114 109 51 

Plot width (m) 1.5 1.5 2.0 2.0 1.5 1.2 

Plot length (m) 10 5 8 5 12 10 

Sowing (date 2009) 20 Apr 24 Apr 23 Apr 15 Apr 13 May 29 Apr 

First mowing (date 2009) 24 Jun 14 Jul 20 Jul 05 Aug 23 Jul 27 Jul 

Previous crop winter barley fallow winter oats fallow spring barley potatoes 

Biomass sampling dates 

         2009* - 18 Aug 1 Sep 5 Oct 20 Aug 24 Aug 

   2010* (1) - 20 Apr - 15 Apr 13 May 28 Apr 

   2010* (2) - 18 May 21 Sep 13 May 11 Jun 28 May 

   2011** - 13-18 Apr Mar - Apr Apr 

 155 



Table 3: Details of participatory trials: Geographic coordinates and soil properties 156 

Farm Nr. 

Coord. 

North 

Coord. 

West 

Elevation  

(m) 

Soil  

Texture
a
 

Sand  

(%) 

Silt 

(%) 

Clay  

(%) 

Soil  

pH 

P 

(mg/L) 

K 

(mg/L) 

Mg 

(mg/L) 

SOM 

(%) 

1 52°21'36.71'' -1°21'9.24'' 51 C 22 20 58 7.4 31.6 122 58 ND 

2 52°37'50.17'' -0°20'42.67'' 1 C 28 31 41 7.6 38.2 441 424 ND 

3 52°8'28.18'' 0°2'57.15'' 45 CL 43 22 35 8.2 16.8 247 61 ND 

4 52°31'17.36'' 0°9'46.39'' 0 CL 39 33 28 6.7 34.2 201 103 ND 

5 51°29'47.91'' 1°3'30.22'' 52 CL 41 40 19 6 33.6 77 63 2.6 

6 51°27'1.65'' 1°9'39.6'' 99 CL 46 33 21 7.2 31.4 185 51 3.3 

7 52°22'1.61'' 1°24'47.37'' 73 C 42 21 37 6.6 30.4 336 108 ND 

8 51°31'5.7'' 1°27'25.92'' 162 CL 32 42 26 8 21.0 110 35 8.2 

9 51°18'56.26'' 1°31'9.32'' 170 CL 29 42 29 7.6 28.4 123 42 3.8 

10 51°22'49.14'' 1°32'3.67'' 125 CL 43 38 19 7.4 47.4 134 44 3.4 

11 51°26'28.01'' 1°54'5.71'' 164 SL 16 61 23 7.1 20.4 95 53 2.6 

12 51°43'56.32'' 1°56'21.42'' 135 SC 18 36 46 7.7 17.2 224 71 3.6 

13 57°16'52.58'' 2°7'56.92'' 97 SaL 45 39 16 5.5 34.0 213 77 8.0 

14 57°11'5.6'' 2°12'45.13'' 109 SaL 58 29 13 5.8 94.2 179 171 7.8 

15 57°33'3.04'' 2°18'0.48'' 120 CL 38 41 21 5.7 18.0 103 80 8.3 

16 57°18'38.38'' 2°18'29.9'' 194 CL 43 38 19 6.2 30.4 212 90 9.2 

17 57°40'16.47'' 3°16'30.66'' 20 LSa 77 16 6 6.3 34.0 110 73 2.4 

18 53°0'38.65'' 3°38'48.06'' 309 SL 7 58 35 4.9 21.2 131 65 ND 

19 52°37'45.57'' 4°5'1.99'' 56 SaL 77 12 11 6.2 16.2 89 161 ND 

20 52°2'44.28'' 4°35'59.37'' 70 SC 7 47 46 4.9 19.2 67 62 ND 

21 51°48'22.52'' 5°4'5.39'' 85 CL 32 41 27 5.9 18.4 170 121 6.5 
a
 C: Clay; CL: Clay Loam; SC: Silty Clay; SL: Silty Loam; SaL: Sandy Loam; LSa: Loamy Sand; SOM: Soil organic matter; ND: Not 157 

determined 158 

  159 
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Species selection and composition of species mixture for use in field trials 160 

Leys can be sown with mixtures of different plant species, which may provide insurance 161 

against the failure of individual species. In addition, mixing species is a way to combine 162 

desirable species-specific traits. To compose optimal species mixtures, a useful criterion for 163 

species selection is the functional complementarity of the different species [32, 40-42], with 164 

the aim of minimizing functional redundancy.  165 

According to this idea, we collected data on the ecological and agronomic traits of 22 legume 166 

species and five grass species from the literature [for details see 43]. To assess 167 

complementarity, a principal component analysis (PCA) was conducted on traits of the 22 168 

legume species (maximum height, flowering time, seed size, rooting depth, productivity, 169 

establishment and competitive ability, [see supplementary material of reference 43]). The 170 

distance of individual species from each other in the PCA bi-plot was considered to be an 171 

indicator of functional divergence and potential for complementarity, in terms of coexistence 172 

and delivering multiple ecosystem functions when grown together in a mixture. Additional 173 

selection criteria included agronomic and practical aspects such as frost tolerance, resistance 174 

to grazing and seed availability of the species in the UK.  175 

As a result of this selection process we chose a subset of four grass species  and twelve 176 

legume species with functionally complementary properties for the replicated and on-farm 177 

trials (Table 1).  Further details of the selection process, as well as the identity of the non-178 

selected species are given elsewhere [44]. All four selected grass species, as well as ten of the 179 

twelve tested legume species, were combined in an ‘All Species Mixture’ (ASM) (Table 1), 180 

which was tested in both the replicated and on-farm trials. Two species (M. albus and V. 181 

sativa) were not included in the ASM because of concerns by the participating farmers about 182 

potential detrimental effects of these species on animal health or agronomic management. 183 

Seed densities of the monocultures were chosen according to general recommendations for 184 
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the UK [45]. The average plant density in the monocultures was 1180.5 plants m
-2

, whereas 185 

the total plant density in the ASM was 1811.1 plants m
-2

. The different densities mean that 186 

diversity or species richness effects cannot be separated from density effects in this study. In 187 

farming practice, however, density in species mixtures often exceeds the densities of their 188 

components [46, 47, but see 48]. This is because on the one hand, an additive mixture is 189 

frequently considered to be impracticable as its density is too high and causes too much 190 

competition among plants, especially when including a large number of species in the 191 

mixture. On the other hand, a substitutive mixture may not make full use of the larger 192 

resource space available to the mixture. The relative seed rates of species in the mixture were 193 

chosen on a number of criteria including expected productivity, seed cost, and seed 194 

availability. 195 

Replicated field trials 196 

In the replicated field trials we evaluated 18 treatments. In total, twelve legume species and 197 

four grass species were each grown singly as monocultures. In addition, two treatments were 198 

reserved for the ASM, which was grown both with and without Rhizobium inoculation (see 199 

below). At all six trial locations, the experiments were sown in spring 2009 (Table 2). All 200 

trials were laid out as single-factor randomized complete block designs with three 201 

replications.  202 

Following common practice, and to remove the possibility of any differences being due to 203 

lack of natural inoculum at sites, seed lots of the four clover species, V. sativa, M. sativa and 204 

one of the ASM treatments were inoculated with rhizobial preparations before sowing (Table 205 

1), with 1 % (w/w) substrate per total seed weight. No suitable commercial inoculants could 206 

be obtained for the other legume species prior to sowing. The locations, plot sizes and sowing 207 

dates are listed in Table 2. Trial sites were distributed over a large geographical area within 208 
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the UK. All trial sites were mown two times per year at 5-10 cm height, with the first mowing 209 

date after establishment in 2009 being between late June and early August (Table 1).   210 

On-farm trials 211 

In addition to the replicated trials, the inoculated ASM was sown by 21 organic farmers 212 

across the UK, including sites in East England, South England, North East Scotland and 213 

Wales. A further 13 sites were also included in the study, but data could not be included in 214 

the analysis because of incompleteness (e.g. sampling only in one of the two study years). 215 

Seed of the ASM was provided for a 0.5 ha strip which was sown by the farmers next to or 216 

within a control ley (Figure 1). Most of the 21 farmers sowed the leys in spring 2009, while 217 

some delayed sowing until later in 2009 for reasons of rotational planning (Table 3). On each 218 

farm, the management for the ASM and the control ley were identical (Table 4), but ley 219 

management differed among farms. The species composition and seed rates of the control ley 220 

were chosen by each farmer individually and differed greatly in the species richness of the 221 

sown mixtures (Table 4). On 16 of the 21 farms white clover was included in the control ley. 222 

 223 
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Figure 1: Photograph of an on-farm trial at Wakelyns Agroforestry, Suffolk, taken in the 224 

summer of 2010. On the left, slightly paler, the control ley (white clover-chicory-black medic 225 

mix), on the right the All Species Mix (ASM). A different site on the same farm was also 226 

used for replicated experiments. 227 

 228 

Table 4: Management details for on-farm trials 229 

Farm  

Nr. 

Sowing  

month 

Mowing Grazing Sown species in control ley 

1 April Yes none AC, BM, CH, WC 

2 April Yes none RC 

3 April Yes none AC, LU, PR, RC, WC 

4 May Yes none AC, BM, WC 

5 July Yes none CC, LU, RC, WC 

6 April No S BT, CF, MF, RG, WC 

7 April Yes none LU 

8 April NA S RG, RC, WC 

9 April No S RG, WC 

10 April No S BM, BT, CF, PR, RC, WC 

11 April Yes C AC, BM, BT, CC, CF, CH, MF, PR, RC, RG, SB, SF, WC, YW* 

12 June NA S BT, IR/PR, WC 

13 April No C PR, RC, TY, WC 

14 April no S PR, RC, WC 

15 April no C PR, TY, WC 

16 May no S RC, PR 

17 April yes none RC, PR 

18 May yes S WC 

19 April yes C & S RC, WC 

20 April yes C  IR, RC 

21 May yes C & S WC 

Mowing: NA: No information available 230 

Grazing: S: Sheep, C: Cattle 231 

Species abbreviations CH: Chicory (Cichorium intybus L.); SB: Salad burnet (Sanguisorba 232 

minor Scop.). RG: Ryegrass (Lolium spec. L.). YW: Yarrow (Achillea millefolium L.); other 233 

species abbreviations are the same as Table 1 234 

* This complex mix contained two additional species that could not be identified 235 

 236 

 237 

Weed cover assessments 238 

Weed and crop species were assessed for percentage cover several times during the trial 239 

duration, using 0.25 m
2
 sectioned quadrats. Within the replicated trials (series I), visual cover 240 
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assessments were carried out at one of the sites only (Barrington Park), by estimating 241 

percentage ground cover five times over the trial period in two quadrats per plot. 242 

In the on-farm trials (series II), all weed and crop cover assessments were carried out with a 243 

0.25 m
2
 sectioned quadrat. On each farm, cover was assessed in four locations within each 244 

treatment, i.e. both in the ASM strip and in an adjacent strip of the control ley, resulting in 245 

eight assessment points per farm and date. Sampling locations were chosen randomly but at 246 

least 10 m were left between any two assessment points. Assessments were performed twice 247 

per farm: in 2009 several weeks after sowing (i.e. late spring in most cases) and in the 248 

following year at a similar time in the growing season. Although this method, with a 249 

relatively small total sampling area per farm and low temporal sampling frequency, did not 250 

allow us to build complete species lists for each trial area, it provided information about the 251 

most frequent weed species. 252 

Weed identification 253 

In most cases, weeds were identified to species level. Where this was not possible, individual 254 

plants were assigned to a species group. For example, docks (Rumex spp.), could not always 255 

be assigned to R. crispus L., R. obtusifolius L. or the hybrid R. crispus x obtusifolius. 256 

Therefore, all docks were summarized under Rumex spp. However, where differentiation was 257 

possible, R. obtusifolius was the most dominant taxon. Volunteer crops, such as potato 258 

(Solanum tuberosum L.), wheat (Triticum aestivum L.) and oats (Avena sativa L.), which 259 

were encountered in weed assessments were excluded from further data analysis. 260 

Weed and crop biomass measurements 261 

In the replicated trials, above ground biomass samples were taken in 2009, 2010 and 2011 on 262 

five of the six trial sites (Table 2). Quadrats for sampling biomass had a size of 0.50 x 0.50 263 

cm and were randomly placed within plots; along the length of the plots, the outer 1 m were 264 
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avoided for sampling to minimize edge effects. Sampling quadrats were aligned diagonally in 265 

the plot. Sampling was performed on one sampling quadrat per plot (2009, 2010) or three 266 

quadrats per plot (2011). While the samples were still fresh, weeds were manually separated 267 

from crops and the weed and crop fractions were separately dried at 80 °C until sample 268 

weights were constant. The timing of sampling in 2011 was chosen to reflect the situation 269 

directly prior to incorporation of the ley into the soil.  270 

Soil sampling and other environmental variables 271 

Immediately prior to sowing in 2009, soil samples were taken on all trial sites, including the 272 

on-farm trials. Soil samples were collected across the field  with a soil corer to a depth of 15 273 

to 20 cm (i.e. the typical depth of ploughing in the study area) and then bulked into a single 274 

composite sample. Individual corer samples were obtained on each trial field when walking 275 

the field in a W-shape with sampling points 2 to 4 m apart.  276 

The samples (> 300 g) were air dried and analysed at Natural Resource Management Ltd 277 

(Bracknell, UK) analytical laboratories. Samples were analysed for soil texture (percentage 278 

sand, silt and clay) using pipette sedimentation. Textural classes followed the UK 279 

Classification (Sand 2.00-0.063 mm, Silt 0.063-0.002 mm, Clay < 0.002 mm). Soil organic 280 

matter was determined using the wet oxidation Walkley Black colorimetric method. Plant 281 

available P was determined according to Olsen at 20 °C; plant available K was extracted 282 

using 1 M NH4NO3 and K concentration was determined by flame photometry. Available Mg 283 

was extracted using 1 M NH4NO3 and Mg concentration was determined using AAS.  284 

Geographic coordinates (latitude, longitude and altitude; Table 3) of all sites were obtained 285 

from publicly available digital maps. Management data such as sowing and cutting dates 286 

were requested from the participating farmers. 287 

Statistical analysis 288 
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All statistical analyses were performed with the programme R, version 2.14.1 [49].  289 

(1) Weed cover in All Species Mix and in monocultures 290 

We compared the cover in the ASM with the average cover from all component 291 

monocultures, either weighted or not weighted by the respective seed density in the ASM. 292 

The weighted average of weed cover was calculated as follows. If si is the seed rate of species 293 

i (in g m
-2

) in the ASM; and wi is the weight per seed for species i (in g); then ni = si/wi is the 294 

number of sown plants per m² of species i within the ASM. The relative proportion pi of the 295 

species i in the ASM can then be defined as pi = ni / ∑i ni. If ci is the weed cover in plots of 296 

crop species i (in %), the average weed cover cw across the monocultures of all species that 297 

constitute the ASM, weighted by the proportion of species within the ASM is cw = ∑i ci pi, 298 

whereas the unweighted average of the weed cover is cu = (∑i ci)/m, where m is the total 299 

number of species in the ASM. Proportions of individual species within the ASM (measured 300 

by the relative number of sown plants) were relatively high for white clover (0.166), large 301 

birdsfoot trefoil (0.138) and birdsfoot trefoil (0.115), and relatively low for meadow pea 302 

(0.001), sainfoin (0.014) and Italian ryegrass (0.019). The weighting by the relative seed 303 

density in the ASM was performed to account for the unequal proportions of individual 304 

species in the mixture. Specifically, assuming that the effects of individual species on weeds 305 

increases with their proportion in the mixture, the expected weed cover in the ASM (in the 306 

absence of any effects of diversity or absolute seed density) would be equal to the 307 

proportional weed cover values in all constituent monocultures, i.e. cw. Differences in weed 308 

cover between ASM and the unweighted or weighted average of the monoculture were tested 309 

with linear mixed effects models using days after sowing as continuous random effect. 310 

Because this analysis revealed significant time x treatment interactions, treatment effects 311 

were analysed for each time separately with one-factorial analyses of variance. Block effects 312 

were non-significant in all cases of this analysis and were removed from the model. 313 
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Normality of model residuals was checked with the Shapiro-Wilks test. No significant 314 

deviations from normality occurred in the weed cover data in the replicate trial. 315 

(2) Weed cover in All Species Mix compared to control ley on farms 316 

In the on-farm trials, weed cover data were analysed with analysis of variance to test 317 

differences between ASM and control ley. However, weed cover data from 2009 and 2010 318 

was found to be significantly non-normal (P<0.001). Since non-normality of the 2009 data 319 

could not be removed by (logarithmic) data transformation, a non-parametric sign test was 320 

applied to data of both years. This test assesses the significance of the direction of the 321 

difference between ASM and control ley. In addition, the 2010 weed cover data was log-322 

transformed and the transformed data subjected to an analysis of variance.  323 

(3) Weed biomass and crop biomass in different legume and grass monocultures 324 

Weed biomass and crop biomass in the replicated trials was analysed in the following way. 325 

To account for strong site effects in weed and crop biomass, we first calculated for each plot 326 

the relative differences (in weed biomass and crop biomass) between individual plot data and 327 

site means, i.e. for weeds W*s,b,i = (Ws,b.i – Ws)/Ws 100%, where W* is the relative difference 328 

in weed biomass from the site mean for species i at site s in block b; Ws,b.i is the absolute 329 

weed biomass for species i at site s in block b and Ws is the site mean of absolute weed 330 

biomass across all species and blocks. Analogous calculations were performed for crop 331 

biomass to determine relative crop biomass as C*s,b,i = (Cs,b.i – Cs)/Cs 100%. Further, to 332 

determine the relationship between relative weed biomass W* and relative crop biomass C*, 333 

we performed a linear regression of W*i against C*i across species; in order to avoid inflation 334 

of degrees of freedom and to account for non-independence of data within sites, values of 335 

C*s,b,i and W*s,b,i were averaged across sites and blocks for each species prior to the analysis 336 

of linear regression. In a subsequent analysis, residuals of individual species values from the 337 
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linear regression function of W* against C* were tested for significance based on a mixed-338 

effects model with site as a random factor, using the lme function in R. 339 

To compare the various species with regard to, Ki = Wi/(Ci+Wi), i.e. the proportion of weed 340 

biomass in total above-ground biomass, the data from all sites was analysed with a linear 341 

mixed-effects model with site as a random factor followed by Dunnett’s test to separate 342 

means of individual species from the means of a set control species; these control species 343 

were chosen as white clover for the legume species and perennial ryegrass for the grass 344 

species, because these species had been found to be most commonly used by the organic 345 

farmers participating in the study (Table 4).  346 

(4) Change in the proportion of weed biomass over time 347 

The temporal change of the proportion Kis of weed biomass in total biomass was analysed by 348 

comparing Kis from the last biomass sampling date against the first date (2011 vs. 2009). For 349 

each species, the absolute difference in Kis between the two dates was tested for the direction 350 

and significance of change by a two-tailed t-test against zero, based on a mixed effects model 351 

with site and block within site as random factors, using the lme function in R. To make 352 

comparisons among legume species, white clover was considered as a control and the 353 

difference between this species and all other legume species was tested with a multiple 354 

(many-to-one) comparisons test after Dunnett; the same test was employed to test the 355 

difference between perennial ryegrass and the other grass species. 356 

(5) Weed floristic similarity between study years 357 

Weed floristic similarity between the two study years, based on presence vs. absence of 358 

individual species in each of the two years, was compared using Jaccard’s index with 359 

confidence intervals given by Real [50]; Jaccard’s index ranges from 0 (no similarity) to 1 360 

(maximal similarity). For individual species, the change from the first to the second study 361 
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year in the number of farms or quadrats on which the species was found to be present was 362 

tested for significance with χ² tests protected with a Bonferroni correction for multiple 363 

testing. 364 

Results  365 

Weed cover in All Species Mix and in monocultures 366 

Weed cover at the Barrington Park site rose sharply in the first two months of the trial and 367 

then declined gradually over the remaining duration of the trial (Figure 2). At the two later 368 

assessments, weed cover in the ASM (cASM) was significantly lower than in the weighted 369 

average cw of the component species. The comparison between weed cover in the ASM and 370 

the unweighted average cu of the weed cover in the monoculture yielded similar results, with 371 

cASM being significantly lower than cu at the last three assessment dates. 372 

 373 

Figure 2 374 

 375 
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Figure 2: Development of estimated weed cover (%) over time in a complex species mixture 377 

of grasses and legumes (All Species Mix, ASM, open circles); and in the average of the 378 

ASM’s component species when grown in monocultures (weighted by relative plant density 379 

in the ASM, filled circles); average over three replicates and standard errors (error bars); (*): 380 

P < 0.1; *: P < 0.05 (t-test). 381 

 382 

However, it was not possible to separate the weed reducing effect of increased plant density 383 

in the ASM from effects of species richness, e.g. through increased weed suppression due to 384 

complementarity of growth habits of the component species.  385 

In the on-farm trials, average weed cover was 10.6 % in year 1 and 5.1% in year 2. Weed 386 

cover was not significantly different between ASM and Control ley in either of the two trial 387 

years following a sign test; also, no significant difference between ASM and control ley was 388 

found for log-transformed weed cover data from 2010, following analysis of variance. 389 

 390 

Weed suppression by different crop species 391 

The legume species with the strongest weed suppression was red clover (Figure 4). For this 392 

species, the proportion of weeds in total biomass at the first sampling was 28.3 % ± 9.9 % 393 

across sites. Averaged across all legumes, the weed proportion in total biomass at the first 394 

sampling was 56.0 % ± 7.6 %; for the grasses, this value was at 33.2% ± 7.0 %.  There was a 395 

strong and highly significant negative relationship between above ground crop biomass and 396 

weed biomass across species (Figure 4; Adjusted R² = 0.78, P < 0.001, df = 16).   397 
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Figure 3 398 

 399 
 400 

Figure 3: Relationship between weed biomass and crop biomass in early autumn 2009, both 401 

expressed as relative difference (in %) of species values from respective site averages. Filled 402 

squares: Clover species (Trifolium spec.); open squares: other legume species; grey triangles: 403 

grass species; open circles: All Species Mixtures (ASM); Grey diamond: average of 404 

monocultures (only ASM components); Black line: linear regression through all points; 405 

broken line: y = –x. Mean of five sites (all except Barrington Park). IM: Inoculated All 406 

Species Mixture; NM: Non-inoculated All Species Mixture; other abbreviations see Table 1. 407 
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Interestingly, all four grass species were left of the regression line, i.e. their weed reducing 409 

effect was higher than would be expected from their above ground crop biomass. To test the 410 

significance of deviations from the regression, a mixed effects model with site as random 411 

factor was run, followed by a t-test on the difference between observed values and values 412 

estimated from regression line shown in Figure 3. According to this analysis, there was a 413 

significantly higher weed suppression ability in grasses than in legumes (P < 0.001). When 414 

individual species were tested, the deviation from the regression line was only significant for 415 

F. pratensis, (P < 0.01), but overall, L. multiflorum had the highest crop biomass and lowest 416 

weed biomass (Figure 3).  417 

In most species, the proportion of weed biomass within the total above ground biomass did 418 

not significantly change over time, i.e. the absolute temporal change in the weed proportion, 419 

over the period of autumn 2009 to spring 2011 was not significantly different from zero 420 

(Figure 4).  421 

  422 
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Figure 4 423 

 424 

 425 

Figure 4: Proportion (in %) of weed biomass in total biomass (above ground): Absolute 426 

change from autumn 2009 to spring 2011; means and standard errors across 4 sites. Positive 427 

values mean an increase in the proportion of weed biomass in the total above ground biomass 428 

over time. Significance stars below the zero-line indicate whether this temporal change was 429 

significantly different from zero (t-test); stars above the zero-line refer to the difference 430 

between white clover (white bar) and the other legume species and or the difference between 431 

perennial ryegrass (black bar) and the other grass species (Dunnett-test). (*): P < 0.1; *: P < 432 

0.05; **: P < 0.01; ***: P < 0.001. For abbreviations see Table 1.[  433 

 434 

This indicates that the characteristics of species shown in Figure 3 (relative crop biomass and 435 

weed suppression) were mostly consistent over the two years of the study, since the 436 

proportions of weeds in total biomass remained largely constant over time (with the 437 
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exception of Timothy grass). We observed a nearly significant (0.05 < P <0.1) increase in the 438 

proportion of weed biomass over time in only two of the legume monocultures, meadow pea 439 

and white sweet clover (Figure 4). Among the grass species, the proportion of weeds in the 440 

biomass significantly decreased in Timothy grass from autumn 2009 to spring 2011 (P < 441 

0.01). 442 

 443 

Weed community composition in on-farm trials 444 

In total, 63 weed species were recorded in the leys. With a total of 56 weed species found in 445 

the first year of the ley, the species richness was twice as large as in the second year, when 446 

only 28 species were recorded. Similarly, the number of weed species per farm was higher in 447 

the first than in the second year, with 11.9 ± 1.6 and 3.8 ± 0.7 weed species per farm, 448 

respectively (average ± standard error). Floristic similarity between the two study years (2009 449 

and 2010), as measured by Jaccard’s index on species presence in either of the two years, was 450 

found to be 0.344; this was not significantly different from random similarity or dissimilarity 451 

according to confidence intervals given by Real [50]. The total number of weed species found 452 

on each farm, in both years together, ranged from 3 to 27. Weed species numbers between the 453 

first and the second years of the study were uncorrelated across farms (linear model, adjusted 454 

R
2 

= 0.08, P = 0.14, df = 16), i.e. farms with a higher number of weed species in the first year 455 

did not necessarily tend to have a higher species number in the second year as well.  456 

  457 

Weed species richness did not correlate with the crop species richness sampled in the ley 458 

(Adjusted R
2
 = 0.007, P = 0.247), indicating that increasing the number of species within in a 459 

ley mixture does not compromise the conservation of wild farmland plants. Similarly, for 460 
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both 2009 and 2010, the number of weed species was not significantly different between the 461 

ASM and the Control leys. 462 

In the first year of the ley (2009), the most frequently encountered weed species were 463 

chickweed (Stellaria media), sow thistle (Sonchus arvensis) and field speedwell (Veronica 464 

persica) (Table 5). In the second year of the ley, almost all annual species decreased in 465 

frequency, i.e. the proportion of farms and of quadrats on which they were present decreased 466 

over time. Conversely, some perennial species such as dandelion (Taraxacum officinale agg.) 467 

and creeping thistle (Cirsium arvense) increased slightly but non-significantly in frequency. 468 

However, C. arvense, as well as the other weed species Rumex spp. with recognized 469 

economic relevance in organic agriculture, were relatively infrequent, being recorded in only 470 

9 to 16 out of 168 sampling quadrats (Table 5). 471 

  472 
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Table 5: Weed species found in year 1 and 2 of the ley on 21 organic farms: Number of farms 473 

and number of quadrats in which the weed species were present, sorted in descending order 474 

by the number of quadrats in 2009 on which the species was present; (a) species with 475 

presence on a total 10 or more sampling quadrats; (b) species with presence on a total of 476 

fewer than 10 quadrats. For individual species, the change from the first to the second study 477 

year in the number of farms or quadrats on which the species was present was tested for 478 

significance with χ² tests protected with a Bonferroni correction for multiple testing (***: P < 479 

0.001; **: P < 0.01; *: P < 0.05). No significant effect of sampling year was found for 480 

species listed in (b). 481 

(a) Presence in 10 or more quadrats No. farms No. quadrats 

 

 

 

(out of 21) (out of 168)  

Species 2009 2010 2009 2010  

Stellaria media (L.) Vill. 15 7  82 15 *** 

Sonchus arvensis L. 10 0  38 0 *** 

Veronica persica Poiret 8 0  35 0 *** 

Persicaria maculosa L. 11 0 * 33 0 *** 

Ranunculus repens L. 9 5  32 13  

Viola arvensis Murray 9 2  32 7 ** 

Spergula arvensis L. 6 0  26 0 *** 

Veronica spec. L. 5 4  26 6 * 

Chenopodium album L. 8 1  23 2 ** 

Poa annua L. 7 0  21 0 *** 

Lamium purpureum L. 6 2  20 3 * 

Myosotis arvensis (L.) Hill 7 1  20 1 ** 

Sinapis arvensis L. 5 4  20 5  

Anagallis arvensis L. 5 0  19 0 ** 

Tripleurospermum maritimum (L.) Koch 4 0  19 0 ** 

Capsella bursa-pastoris (L.) Medik. 5 0  18 0 ** 

Galeopsis tetrahit L. 4 0  17 0 ** 

Polygonum spec. L. 4 0  16 0 ** 

Rumex spec. L. 8 5  16 11  

Anthemis arvensis L. 4 2  15 7  

Convolvulus arvensis L. 5 1  15 1  

Fallopia convolvulus (L.) Löve 5 0  15 0 * 

Papaver rhoeas L. 4 2  14 4  

Polygonum aviculare L. 3 0  14 0 * 

Taraxacum officinale F.H. Wigg 5 8  13 22  

Galium aparine L. 3 1  12 1  

Cirsium arvense (L.) Scop. 5 2  9 12  

Cerastium fontanum Baumg. 2 3  8 5  

Elymus repens (L.) Gould 1 1  8 3  

Achillea millefolium L. 2 1  4 6  

Aphanes arvensis L. 1 2  3 11  

 482 

  483 
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[Table 5: continued] 484 

(b) presence in fewer than 10 quadrats No. Farms 

(out of 21) 

No. Quadrats 

(out of 168) 

 

 

 Species 2009 2010 2009 2010  

Senecio vulgaris L. 4 0  9 0  

Alopecurus myosuroides Huds. 3 0  9 0  

Vicia hirsuta (L.) Gray 1 0  8 0  

Geranium spec. L. 4 1  5 1  

Avena fatua L. 2 0  5 0  

Kickxia elatine (L.) Dumort. 2 0  5 0  

Plantago major L. 2 0  5 0  

Sisymbrium officinale (L.) Scop. 2 0  4 0  

Matricaria recutita L. 1 0  4 0  

Brassica napus L. 1 0  3 0  

Legousia hybrida (L.) Delarbre 1 0  3 0  

Veronica arvensis L. 2 1  2 6  

Mentha arvensis L. 2 0  2 0  

Matricaria discoidea DC 2 0  2 0  

Glebionis segetum (L.) Fourr. 1 0  2 0  

Kickxia spuria (L.) Dumort. 1 0  2 0  

Aethusa cynapium L. 1 0  1 0  

Fumaria officinalis L. 1 0  1 0  

Lactuca serriola L. 1 0  1 0  

Lapsana communis L. 1 0  1 0  

Odontites vernus Dumort. 1 0  1 0  

Poa trivialis L. 1 0  1 0  

Senecio jacobaea L. 1 0  1 0  

Urtica urens L. 1 0  1 0  

Poa spec. L. 0 1  0 8  

Cirsium vulgare (Savi) Ten. 0 2  0 5  

Cichorium intybus L. 0 1  0 4  

Arabidopsis thaliana (L.) Heynh. 0 1  0 2  

Daucus carota L. 0 1  0 1  

Sherardia arvensis L. 0 1  0 1  

 485 

Discussion 486 

Within the context of organic rotations in Europe, this study addresses two contrasting 487 

aspects of weeds in agricultural rotations, namely weed control and weeds as constituents of 488 

farm biodiversity. It highlights, therefore, the potential conflict between agronomic and 489 

biodiversity aspects of agricultural production.  490 

General observations 491 

Overall, we found total weed cover in the range of 5.1-10.6 % in the on-farm trials, which is 492 

comparable to values of total weed cover in grass/clover leys reported in a study on weeds in 493 
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organic rotations in the North of England [18:Eyre]. In the replicated trial at Barrington Park 494 

however, we observed much higher weed cover. It is likely that differences between these 495 

observations are due to different sampling times, since there is a large time effect on weed 496 

cover (Figure 2). 497 

In the replicated trials, crop biomass and weed biomass were inversely related (Figure 4), 498 

confirming earlier findings [e.g. 51, 52]. Only one species deviated significantly from the 499 

regression between the two parameters relative weed biomass and relative crop biomass; 500 

meadow fescue had a lower weed biomass than would be predicted given its crop biomass 501 

(Figure 4).  502 

This result indicates that crop productivity, measured as above-ground biomass per unit area, 503 

is an excellent indicator of competitiveness against weeds. At the same time, this relationship 504 

may to some degree suggest functional complementarity between crops and weeds. In 505 

monocultures with relatively low crop biomass, weeds filled the gap, thus resulting in 506 

relatively high weed biomass. In arable cash crops there is (almost) no complementarity 507 

between crops and weeds. In terms of yield as the primary function of the cash crop, weeds 508 

make no direct positive contribution; on the contrary, weeds limit yields through competition. 509 

Leys with their associated weeds are different in this respect. Many functions are fulfilled by 510 

both the ley crop and weed species, e.g. covering the soil and thereby protecting it from 511 

erosion, providing plant residues for building up to soil organic matter or supporting 512 

pollinators and other beneficial insects. Although some central functions of the sown ley 513 

species such as nitrogen fixation are not fulfilled by the majority of weed species, there is at 514 

least some degree of functional complementarity between crops and weeds in rotational leys. 515 

Apart from this, there is a further important difference between weeds in leys and weeds in 516 

arable cash crops. In leys, the time between emergence of weeds and their destruction 517 

through mowing is typically shorter than between weed emergence and harvest of arable 518 
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crops. Therefore, many annual weed species may not have completed their life cycle and set 519 

seed before the ley is cut. In fact, the first cut of organic leys is often timed before weeds 520 

have produced seed. For these reasons, we suggest that weeds can be tolerated in organic leys 521 

to a higher degree than in organic cash crops. However, it is currently unclear where the 522 

balance lies between functional complementarity and functional antagonism of sown ley 523 

species vs. weeds. 524 

 525 

Characterisation of individual legume and grass species 526 

In this study, we found that the proportion of weeds and crops in total above-ground biomass 527 

did not significantly change between the first and the last sampling time for most species 528 

(Figure 5); this result is unexpected because of the asymmetry of competition typically 529 

observed in plant communities [53]. With asymmetric competition it would be predicted that 530 

proportions of crops or weeds change over time, as the competition dynamics lead to shifts in 531 

the proportion of species towards the dominating species. There may be several reasons why 532 

our observations do not support the expectations arising from asymmetric competition. First, 533 

the sampling effort may have been insufficient to detect significant effects over time. 534 

Similarly, the study period may not have been long enough for asymmetric competition to 535 

become apparent. Also, in leys competition between crops and weeds may be reset to a 536 

certain degree with each cut and with the break in vegetative growth over winter. While 537 

spring-germinating annual weed species form a new generation each spring, most legumes 538 

tested here are perennials, but they also need to re-grow after winter, or after cutting. In 539 

contrast to most of the ley species assessed in this study, in three species we found significant 540 

shifts over time in the proportion of weeds, namely white sweet clover and meadow pea 541 

(towards an increasing proportion of weeds), as well as timothy grass (towards an increasing 542 

proportion of the crop). In the cases of meadow pea and sweet clover, the observed increase 543 
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in the proportion of weeds was likely due to poor recovery of plant growth following 544 

mowing. Large variation across sites (indicated by large standard errors) was observed for 545 

crimson clover with respect to the change of weed proportion over time (Figure 4). This 546 

species is annual but is able to re-grow from seed; here, shifts over time in the proportion of 547 

crops and weeds may reflect variation in the ability of the crop to produce a second 548 

generation.  549 

Differences observed among species in their competitiveness against weeds may to some 550 

extent reflect the intensity of plant breeding efforts. It is indeed reasonable to assume that 551 

there is a positive feedback relationship between a species’ productivity and the breeding 552 

efforts dedicated to it. For instance, both red clover and white clover, in this study found to be 553 

the two species with the strongest weed suppression (Figure 4), have received much more 554 

attention from breeders than the other legume species trialled here, which can be interpreted 555 

both as a reason for and a consequence of the relatively high productivity of white and red 556 

clover. Further, this study found that grasses outperformed legumes in terms of weed 557 

suppression, which is in line with earlier findings on the smaller weed suppression abilities of 558 

legumes in comparison to grasses [e.g. 13, 15].  559 

The analysis of the individual legume species also shows that there is a degree of redundancy 560 

in the ASM, where some species (such as meadow pea) perform too poorly to warrant an 561 

inclusion in ley mixtures. Thus, mixtures with fewer species, but with complementary 562 

functions, may optimise weed management (and crop performance) in leys. This has been 563 

supported by analyses of potential mixtures with different numbers of the species trialled in 564 

this study [43]. 565 

   566 

Weed communities in on-farm trials 567 
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This study suggests that several weed species are dominant in organically managed leys 568 

typical in the UK and that weed species richness may be higher than previously reported [16]. 569 

With the dominating Stellaria media, Sonchus arvensis and Veronica persica we found 570 

species that are common and typical annual weeds of arable fields in the UK and throughout 571 

Western Europe. With their short life cycles they are adapted to high-disturbance regimes. 572 

With an average value of 11.9, the number of weed species encountered per farm was slightly 573 

greater than in a single-site study investigating the effects of rotations on weeds, where only 9 574 

weed species were recorded from a grass/clover ley [18]. Further, our results showed that 575 

annual weed species typical for arable fields were dominant in the year of establishment of 576 

the ley. In terms of weed communities the start of the ley phase is thus similar to those found 577 

in arable crops. On some sites, the ley was, in fact, undersown into cereals. Further, the weed 578 

community changed considerably in the second year, towards perennial and grassland 579 

species, most probably owing to the cessation of tillage and the repeated cutting, mulching or 580 

grazing. This change in community composition from annual to perennial species following 581 

the changes in land managed is typical and has been observed in several other studies [e.g. 582 

13, 54]. 583 

However, as pointed out in the Methods section, the sampling strategy for the weed species in 584 

the on-farm trials was not designed to generate an exhaustive picture of the weed flora in 585 

organic fertility building leys. In particular, because of spatial aggregation in weeds [55], the 586 

number of quadrats for sampling in on-farm trials was likely too small to reliably detect all 587 

species present on the farms. Therefore, it is likely that the data obtained for species richness 588 

on the organic leys underestimate the actual weed species richness [cf. 21]. Similarly, the 589 

actual frequency of species on the farms, i.e. the proportion of farms on which a given 590 

species is present, is likely to be higher than measured with our sampling method. Further, 591 

the methods applied here do not allow us to build a picture of the weed species present in the 592 
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seed bank. Finally, it is not known to which degree the ley management, e.g. cutting vs. 593 

grazing, had an impact on weed communities but this aspect was outside the scope of this 594 

study. 595 

 596 

Ley species mixtures and weeds 597 

Compared to the average of monocultures, the ASM was found to have significantly lower 598 

weed cover (Figure 2), and ranked among the best performers with regard to both crop 599 

biomass and weed biomass (Figure 4). However, these effects cannot be ascribed to the 600 

mixing of species, since diversity effects and density were confounded in this study. Seed 601 

density in the ASM was 53.4 % higher than the average seed density of all component 602 

monocultures. In the on-farm trials, ASM was not significantly better at controlling weeds 603 

than the control leys. However, sowing rates for the control leys were not recorded. 604 

Therefore, it remains speculative whether differences in seed densities between ASM and 605 

control leys might be a reason for the observed results.  606 

Generally, there is evidence that mixing species does help to control weeds, especially when 607 

crops are functionally diverse [56]. A study on weeds in short-term grassland showed weed 608 

suppression to be higher in mixtures than in monocultures [57]. Weed suppression in annual 609 

species mixtures has also been found to be better than in monocultures [47, 58, 59]. Further, 610 

because of functional complementarity among different sown species, seed densities in multi-611 

species mixtures may generally be increased above the sowing rates used in respective 612 

monocultures or simpler mixtures with a lesser degree of complementarity. Thus, higher plant 613 

densities – made possible by mixing multiple species – may then be used as a tool to suppress 614 

weeds [60]. At the same time, further research is necessary to separate species richness 615 

effects on weeds from the impact of plant density in leys. 616 
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Our on-farm trials show that weed species richness as a component of farm biodiversity is not 617 

significantly reduced when including more crop species in the ley, in contrast to earlier 618 

findings [61]. Weed species richness in the ley is more likely to be influenced by the history 619 

and landscape features [62] of any particular site. In the first year of establishment, leys may 620 

be seen to provide a suitable habitat for arable weeds. For the later stages of the ley, whilst 621 

annual weed species decline, the challenge remains to control perennial weeds such as 622 

creeping thistle (Cirsium arvense) and docks (Rumex spp.). However, we speculate that these 623 

species are again likely to be mostly influenced by site history (e.g. tillage [63]) and to be 624 

relatively unaffected by the choice of species in a ley mixture.  625 

 626 

Conclusions 627 

In the past, the question of what organic agriculture contributes to the conservation of 628 

farmland biodiversity has been researched extensively [64], showing biodiversity benefits of 629 

organic farming in comparison with conventional farming [65, 66]. In this debate, little 630 

attention has so far been paid to organic leys, despite legume based leys being an essential 631 

feature of many organic systems, in particular in Europe. No direct comparison is therefore 632 

possible with conventional agriculture, because typically there is no ley phase in current 633 

conventional rotations [e.g. 67, 68]. Organic leys add to the diversity on farms by including a 634 

range of crop species that are otherwise not cultivated. This study has shown that organic leys 635 

harbour a range of wild plant species that further contribute to species richness on the farm. 636 

Recent evidence shows that young leys (<1.5 years old) provide a better habitat for spiders 637 

than cereal fields [69]. Leys therefore constitute an important element of farm biodiversity.  638 

As we have demonstrated, the choice of species in organic leys can be used to optimise weed 639 

control. It remains open to which degree the ecological functions provided by weeds may be 640 
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fulfilled by designing targeted crop mixtures, i.e. by replacing weeds with crops while 641 

maintaining their ecological functions. However, it is unlikely that effective protection of rare 642 

weed species can be achieved through ley design only. Further research is needed to show 643 

how leys can be optimized for multifunctional performance. 644 
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